
Fast Synchronization for
Shared-Memory Multiprocessors

c

December 1985

RlACS
Research InstitUte f o r Advanced

(N A S A - C R - 1 8 7 2 9 7) FAST S Y N C H R O N I Z A T I O N FOR N90-71376

CACHES: BUSY-WAIT LOCKING, WAITING,
UNLOCKING. S L E E P - U A I T AND SERVICE-REQUEST Uncl as
QUEUING: PARADIGM FOR<Reseafch I n s t , f o r 00 /62 0295384

SHARED-MEYORY MULTIPROCESSORS- S Y Y C H R O N I Z I N G

Fast Synchronization for
Shared-Memory Multiprocessors

Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking
Sleepwait and Service-Request Queuing :

Paradigm for High-Contention Atomic Operations

Philip Bita t
Research Institute for Advanced Computer Science

NASA Ames Research Center
and

Computer Science Division
University of California, Berkeley

December 19, 1985

Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking

The issues in broaa'casi synchroniaztion schemes for caches are analyzed, and new
methods for busyowait locking, waiting, and unlocking are introduced. The lock/unlock
scheme allows busy-wait locking and unlocking to occur in zero time, eliminating the
need for test-and-set; while the wait scheme eliminates all unsuccessful retries from the
switch, and allows a process to work while busy-waiting. These methods for busy-wait
locking, waiting, and unlocking a h integrate processor atomic read-modify-write
instructions and programmer/compiler implementatiyns of atomic, busy-wait-
synchronized operations under the same mechanism, and improve the performance of
both approaches to atomic operations. The evolution of broadcast schemes is also
analyzed in detail.

SleepWdt and ServicctRequest Queuing
Paradigm for High-Contention Atomic Optrrtions

Fast queuing' operations on priority queues, including the sleepwait operations P and V,
can be executed by VLSI hardware, whose structure, function, and management are
presented. This introduces a paradigm for M S I implementation of high-contention
atomic read-modify-write operations. The paradigm will virtually eliminate switch
traffic in the execution of such operations, as well as speed up the operations themselves
tremendously.

Abstract

Synchronizing Caches
Busy-Writ Locking, Waiting, Unlocking

-4 cache may serve several purposes. In a shared-memory system in which caches serve
as local memories for writable data, read/write sharing of data among the caches must
be synchronized. This is an instance of the problem of read/wi te synchronization of
replicated datu, which entails two tasks: serializing conflicting access requests, and pro-
viding the latest version of the requested data. A cache synchronization scheme for
broadcast systems is presented, introducing efficient methods for busy-wait locking, wait-
ing, and unlocking. The Iock/unIock scheme allows busy-wait locking and unlocking to
occur in zero time, eliminating the need to fetch busy-wait lock bits from memory
independently of the data in order to test-and-set them. The wait scheme eliminates all
unsuccessful retries from the switch, and allows a process to work while busy-waiting.
This method for busy-wait locking, waiting, and unlocking also integrates processor
atomic read-modify-write instructions and programmer/compiIer implementations of
atomic, busy-wait-synchronized operations under the same mechanism, improving the
performance of both approaches to atomic operations. Many options are possible for a
cache synchronization scheme for a broadcast system, and will be selected according to
the constraints of cost, performance, and off-the-shelf parts that will be used. The
options introduced in the literature are compared and contrasted in a presentation of the
evolution of broadcast synchronization schemes.

SleepWait and Service-Request Queuing
Paradigm for High-Contention Atomic Operations

Fast queuing operations on priority queues, including the sleepwait operations P and V,
can be executed by VLSI hardware, thereby eliminating the need to busy wait for access
to high-contention process queues and servicerequest queues. The structure, function,
and management of the hardware queues are presented, along with their interface to the
processors and the switch. The queuing hardware is reladvely simple, and is suitable for
tZS1 design, due to the replication of cells and the simple control. In addition, this
introduces a paradigm for W S I implementation of highsontention atomic read-
modi f y - u d e operations. The paradigm will virtually eliminate switch traffic in the e x e
cution of such operations, as well as speed up the operations themselves tremendously.

Contents

Perspective

0 Motivation

Method

0 Overview

Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking

e General Concepts in Cache Synchronization

Broadcast Systems for Cache Synchronization

SleepWait and Service-Request Queuing
Paradigm for High-Contention Afomie Operations

SleepWait and Service-Request Queuing

Paradigm for High-Contention Atomic Operations

Find Sections
1

0 Conclusion

0 References

Acknowledgements

Appendices

Figures

Detailed Contents

A. Perrpcetfve 1

A.l. Motivation
A.3. Method
A3. Overview

B. Synehron; *Ins C u h u
Buay-Wdt Loeklng, lidtfng, Unloeklns

B.1. General Concepa in Cache Synchronization

B.l.l. Purpose of Caches
B.1.2. Red/\Vrite Synchronization
B.1.3. Broadcast
B.1.4. Placement 01 Atoms in Blocks

B.9. Broadcast Systems lor Cache Synchroaiz~tion

B.2.l. Protocol Components
B.3.2. Protocol in Action
B.2.3. Protocol Evolution

C. S l e e g W d t and ServictRequed Qucuhs
P u d p for Hlgh-contention Atomlc OperrUoru

C.1. SleegWait and Service-Request Queuing

C.l. l .
C.1.2.
C.1.3. Related Issues

Uselulnas 01 Hardware Sleep/Priority Queues
Structure, Management, Function of Hardware Queues

C.3. Paradigm lor High-Contention Atomic Operations

D. Concllulon

D.I. Vision for FIst Synchronization
D.2. &st OlBotb Worlds
D.3. Evaluation of Features

Referaneea

Acknorledgcmcnt.

Appendken

1. High-speed Memory Trvrsler
2. Procisor Requests, Cache Responses, Bus Commmds
3. Block-Invalidation Bus Tr&c
4. Non-Broadcast Cache Systems
5. Interrupt Management

Figures

3
i
6

9

11

11
14
15
17

20

20
22
35

49

51

51
54
59

62

65

65
68
69

70

53

15

77
19
83
96

102

107

A. Perspective

A.1. Motivation
A.2. Method
A.3. Overview

3
4
8

A.1. Motivation

What is the most important issue *m computer srchitecture today?

(I invite the reader to pause a moment and offer an answer.)

One of the most important issues is how to design multiprocessor systems that can real-
ize the speedup potential of many processors. The major problem is how to arrange for
the processors to coordinate, or synchronize, their activities efficiently, so that the over-
head of coordination is not greater than the benefit realized by the greater concurrency.
To be specific, suppose that a problem can be arranged to run faster on a multiprocessor
than on a uniprocessor, but when the execution time necessary to make these arrange-
ments is counted, the total execution time is not appreciably less than the execution time
on a uniprocessor. In this case, the expense of the multiprocessor does not pay off.

Shared-Memory Architecture. Project Aquarius at Berkeley, lead by Professors
-4lvin Despain and Yale Patt , is interested in building high-perfomance systems. We
believe that performance and cost are best served in a multiprocessor system by taking a
shared-memory, or.processot-lo-memoy, architecture to its limit, including as many pro-
cessors as possible, before moving at a higher level into a message-passing, or processor-
fo-processor, architecture (Gajski, Peir 19%). Performance is better served because
memory accesses in a processor-*memory architecture tend to be more tightly timed
(with respect to mean and variance) than memory accesses in a processor-to-procer
architecture, though I do not believe that these correlations are logically necessary.

At the other extreme, a shared-memory, singlebus architecture offers a fow-cost
approach to building a multiple-microprocessor system, so this kind of architecture is
rapidly gaining in importance (Bell et al. 1985).

In view of these two distinct interests, it is useful to identify architectural features that
improve the coordination, or synchronization, of processors in a shared-memory architec-
ture. A designer of either kind of system, then - high performance or low cost - will be
able to select the features that best serve their interest.

Prolog. Project Aquarius is investigating the design of a high-performance, multipro-
cessor system to execute logic programs, currently Prolog (Dobry, Despain, Patt 1985).
We have built a uniprocessor system to execute Prolog and are now designing a mul-
tiprocessor system. In order to realize the concurrency potential in logic programs, we
are planning to implement predicates (procedures) as lightweight processes - all execut-
ing in the same virtual address space for a given program (Kepecs 1985). Furthermore,
predicates will be producing and consuming many variable values, and they will need to
synchronize this activity.

In short, we are planning for many medium-grained, lightweight processes. We expect a

typical program to have a large number of these processes, and the processes will be gen-
erating much synchronization activity, including frequent sleep and wakeup operations.
Rumor has it that synchronization activity may occur every 10 or 20 memory references.
So we are devoting a great deal of effort toward making synchronization fast. Hence this
report.

A.2. Method

Architectural Suppor t for Operating Systems. Professor John Ousterhout
addresses the topic of architectural support for operating systems this way.

My advice to computer architects who want to help operating system designers is
this: Don't do us any favors!

(CS252 guest lecture, U.C. Berkeley, October 14, 1985) Ousterhout is responding to the
history of computer system architecture, which is cluttered with examples of complex,
slow, inflexible features implemented for operating system 'support.' Many of these
features were even advocated by operating system (OS) designers themselves, unable to
foresee the full, negative implications the features would eventually have on the develop
ment, use, and performance of the system.

Ousterhout states that in an environment where security is not of prime concern, the
only real help that computer architects can offer OS designers is to make critical, high-
frequency operations fast. Furthermore, these hardware operations should be relatively
primitive operations - for use by OS designers to implement higher-level operations and
policies of their choosing.

To illustrate, Ousterhout favors reference bits on main memory pages (omitted from the
V-LY), hardware management of cache synchronization, primitive synchronization opera-
tions such as test-and-set, and fast data transfer for 1/0 and memory-bmemory
transfer. On the other side, measurements of standard programming environments, such
as the Mesa environment at Xerox PAFtC, indicate that process switching is relatively
infrequent in these environments, while procedure calls are very frequent. So the speed
of the latter, not the former, should be improved by hard3vare targeted for that environ-
ment.

In short, the two goals for architectural support for OSs (in a non-high-security environ-
ment) are these.

Perfomonce: A hardware feature is justified only if it speeds up a high-frequency
opera tion.
fimitivccr: A hardware feature should be relatively primitive, so that it can be used
in a variety of ways by the OS designers to create higher-level operations and policies
of their choosing.

- 4 -

In this report I introduce three such primitives for performance, and I propose an imple-
mentation for a primitive suggested by Ousterhout.

Cache lock state - for broadcast switch
c Allows zero-time busy-wait locking and unlocking, eliminating the need for fetch-

ing and test-and-setting a lock bit independently of the data it protects
Integrates processor atomic read-modify-write instructions and
programmer/compiler implementations of atomic, busy-wait-synchronized opera-
tions under the same mechanism

Cache busy-wait register - for broadcast switch
Eliminates all unsuccessful retries from the switch

c Allows a process to work while busy waiting
Hardware queue (t U I circuit) - for any switch
c Viitually eliminates switch traffic in the execution of such operations, as well as

speeding up the operations themselves tremendously
o Can be used for both sleepwait (P and V) and servicerequest queues (e.g., a

floating point or 1/0 processor)
t Can be used for both FIFO and priority queues
c Introduces a paradigm for implementation of any high-contention atomic read-

modify-write operation
High-speed memory tram fer operation
E Transfer from one memory unit to another at the clock rate, where a memory

unit is a main memory unit, a cache, or an I/O-processor buffer
The first three primitives not only improve the performance of high-frequency, synchron-
ization operations, but also integrate otherwise disparate operations under the same
mechanism, thereby reducing the cost of the design and the hardware. The fourth,
data-transfer, primitive was suggested by Ousterhout as greatly needed by OS designers,
so I offer two possible implementations of it, one for maximal speed and one for lower
cost and e s i e r use.

Technology. A watchword among computer scientists is to track the trends of technol-
ogy and take advantage of what technology is or will be offering. To be specific, one of
the key conclusions today is that memory is relatively inexpensive, so it should be used
liberally in designing computer systems.

My own vision, in this vein, is that MOS VLSI design technology is available, and is get-
ting better fast, so hardware circuits such as sleep/priority queues - which would be
unreasonably expensive if designed using standard TTL or ECL chips - are now feasible
and can be strategically employed to implement high-contention atomic read-modify-
write operations.

Snapshot. This report offers a snapshot of rapidly developing ideas, but I have
attempted to stop the action and capture a clear picture for the reader. Further, the

major points in nearly every section are presented as bullets in that section. Cons+
quently, the key features of the snapshot can be identified by paging through, aiming for
the bullets.

A.3. Overview

I currently identify three major, low-level synchronization issues for shared-memory
arc hi tec tur e.

Synchronization of caches
Implementation of busy wait
Implementation of sleep wait

Synchronization of Caches. Smith (1984) characterizes the issue this way:
The solution of the multicache consistency problem for large numbers of processors is
one of the most important current problems in computer architecture, and it is one
of the major barriers to effective multiprocessing.

Specifically, processes in a shared-memory system communicate by taking sole uccess to
some shared data object and writing it, leaving information in memory for another prcF
cess to read. One example, typical of Prolog and dataflow, is the producer/consumer
relationship. In this case, one process produces a value, sap a variable binding, for
another process, and that process, in turn, reads the value and uses it. The second pro-
cess may also report back to the first process, in which case it also writes a shared-
variable. Another example is the management of senn'ce-request queues, where one pro-
cess leaves a service request for another process in the latter's request queue. The latter
eventually reads the request and services it. This will typically occur among processes
running on different processors. For example, a process running on a program inter-
preter may send a service request to a floating-point processor or an 1/0 processor.

In this context, the processor caches must correctly implement the read/write sharing of
data that is requested by the software. Briefly, cache synchronizution consists of this:

Read/write sharing of replicated data among the cache2

Busy Wait, Sleep Wait. If the wait for sole access to a shared object is expected to
be short, the process will busy wait. That is, it will continue to run while waiting,
though as we will see, this does not mean that it must continually test a bit while wait-
ing. On the other hand, if the wait is expected to be long, the process will be switched
out of the processor and will steep wait on a process queue, allowing another process to
run on that processor. However, if the hardware in a multiprocessor system does not
itself implement P/v (or equivalent) operations, then by default the software must
implement sleep wait using busy wait. In this case, a queuemanager process, instead of
invoking hardwarequeue facilities, will busy wait for access to a software-implemented
process queue; and when it gains access, it will enqueue or dequeue a process, as
appropriate. If semaphores are used, they will be part of the queue descriptor. In brief,

sleep wait as a high-level concept must be implemented using busy wait at a lower level
if the hardware does not implement P/V operations. In this case, sleep wait does not
actually avoid busy wait. Rather the hope is to reduce the time spent executing wait
operations by busy waiting for access to a sleepwait queue rather than for access to the
target data.

This identifies the two r e w n s for using busy wait.
0 A situation where busy wait is less costly than sleep wait
0 A system where busy wait is necessary in order to implement sleep wait
Keep in mind that in either case, the atomic operation may be implemented by a single
processor instruction or by a section of code, though the second case presents an
estremely large bite for a single instruction, and will probably be implemented by several
software routines.

High-level Issues. High-level synchronization issues address the content of the syn-
chronization operations themselves (Gajski, Peir 1985). I will not discuss these issues,
except to cite the sharing due to a producer/consumer relationship and due to service-
request queues, as mentioned.

- 7 -

B. Synchronizing Caches
Busy-Wait Locking, Waiting, Unlocking

B.l . General Concepts in Cache Synchronization 11

B.1.1. Purpose of Cache 11

B.1.4. Placement of Atoms in Blocks 17

B.1.2. RtadJWrite Synchronization 14
B.1.3. Broadcast 15

B.2. Broadcast Systems for Cache Synchronization 20

B.2.1. Protocol Components
B.2.2. Protocol in -4ction
B.2.3. Protocol Evolution

20
22
35

B.1. General Concepts in Cache Synchronization

B.l.l. Purpose of Caches 11
B.1.2. Read/Write Synchronization 14
B.1.3. Broadcast IS
B.1.4. Placement of Atom in Blocb 17

This section will develop the general concepts underlying cache synchronization. We will
first look at the purpose of caches, then move on to the concept of read/write synchroni-
zation and consider the hardware role in the synchronization of caches. Next we will
consider the role of broadcast in cache synchronization and the way a cache may handle
irrelevant requests that come via the switch. Finally, we will look at the implications
that the write policy for shared data - writeback vs. write-through to other caches -
has on the placement of atoms in memory blocks.

B.1.1. Purpose of Caches

A cache may serve several purposes in a computer system, including these:
High-speed memory
Local memory - in a multiprocessor system
B u s y - w i t locking/waiting - in a broadcast multiprocessor q s t e m
High-speed memory-to-memory trans fer
Switch mediation - especially in a broadcast multiprocessor system

High-speed Memory. In a system with just one processor accessing memory - a sin-
gle CPU and no 1/0 processors - the cache is the high-speed component of the memory
hierarchy external to the CPU (Figure 1). Wilkes (1965) was one of the earliest to dis-
cuss this concept (Censier, Feautrier 1978; Denning 1970). The concept, which he called
'slave memory,' carried the notion that its management would be simple enough to be
implemented in hardware and would thus be fast. 3

Local Memory. In a shared-memory system with several processors that access
memory - CPUs, 1/0 processors, etc. - a cache is connected to a processor through a
shared switch or through a private path (Figures 2,3). If connected through a shared
switch, the cache serves only as the high-speed component of the memory hierarchy.
But if connected through a private path, the cache also serves as local m m m y for the
processor, reducing the processor's need to compete with other processors in accessing
the switch and main memory. That is, if a block of data is fetched into the cache and
subsequently read several times, only the first read requires fetching from main memory
(or another cache) through the switch. An early implementation of this function was in
the two page-table caches under the MULTICS operating system. Consistency of the
caches was maintained by invalidating both caches when the page table was written by

- 11 -

either of the two processors (P. Denning, personal cornm. 1985).

critical issue here is the policy for updating other caches and main memory with the
contents of a dirty block. An update scheme can be thought of as a variation or combi-
nation of the following two basic policies.
0 b’pdate-by-word (unite-through): A cache updates main memory and other caches

that have the block (if there are any) with a word whenever its processor writes to
the cache. On u run’te:
o Vpdate main memory
o Update other caches having the block (if any)

0 Update-by-bfock (urrite-back): A cache updates another cache only when the latter
requests the block. Memory may be updated at the same time, or else only when the
cache must purge the block due to its own activity. When a processor writes to the
cache, copies of the block in other caches are invcrfidated, rather than updated. On u
w i t e:
o Do not update main memory
o Invalidate other caches having the block (if any)

Another typical update scheme derives from uniprocessor systems and non-broadcast
multiprocessor systems: update main memory (as in writethrough under a uniprocessor
system), but invalidate other caches (as in a non-broadcast system, where updating other
caches cannot be done simultaneously).

I have introduced ‘update-by-word’ and ‘updateby-block‘ as alternate names to ‘write-
through‘ and ‘write-back’ in order to draw attention to what I feel is the key dxerence
between the two policies, namely, the granularity of the update. We will see the space
and time implications of this granularity.

Specifically, updufe-by-word, or writethrough, serves the function of locd memory better
than update-by-block if a relatively umofl number of writes to a block are made before it
must be purged or be read by another cache. Whereas updufe-by-bfock, or write-back,
serves local memory better if a relatively large number of writes to a block are made
before it is purged or read by another cache. If a block%as n words, the tradeoff point
will be expressed as some fraction of n writes.

To illustrate, if exactly n writes will be made to a block before it is purged or read by
another cache, i t is better to transfer the block as a whole, rather than in single-word
chunks. This is because the switch traffic due to switch arbitration (if not overlapped)
and due to transfer initiation, as well as the delay to those processors whose caches are
updated, will be n times smaller (on average) under updateby-block, while the actual
bus-transfer time will be the same. A stochastic model can be devised, dowbg estima-
tion of which update policy will tend to be better for a particular system.’

Technical note concerning update-by-Mock: A block of shared data is probably first fetched for read
pridcge by a cache on 8 processor read, so if it is present in another cache at that time, a rubaeqoent W-

- 12 -

Update-by-block for blocks that are not shared among caches appears to offer substantial
reduction in bus traffic and improvement in performance over update-by-word, according
to Xorton and Abraham (1982) and Smith (1982). For blocks that are shared among
caches, Archibald and Baer (1985) provide evidence of the opposite - that update-by-
word is better than update-by-block. However, their model of how sharing is done will
not occur under a properly managed update-by-block policy, as will be shown in Section
B.1.4.

Busy-Wait Locking/Waiting. A new function introduced in this report is to have
the processor data caches in a broadcast system implement busy-wait locking and wait-
ing. Under this scheme, in order to lock a data object, a processor does not execute
test-and-set on a data bit. Instead, the first block of the object is fetched with write
privilege into the cache (if the block is not already locked by another cache), and its
state is set to locked (Figure 4). If another cache requests the block, the cache in which
it is locked reports that fact, and records that another processor is waiting (Figure 5) .
The requester cache, then, stores the block address with busy-wait status, and its proces-
sor waits for notification from the cache when the block has been successfully fetched
and locked.

1Vhen the processor holding the lock is done with the privileged operation, it unlocks the
locked block and, if there was another processor waiting, broadcasts the unlocking to all
caches (Figure 6). At the next bus arbitration, all of the caches holding the block
address in busy-wait status arbitrate for the bus. The winner fetches the block with
write privilege, locks it, and notifies its processor. The other waiting caches continue
waiting, but do not access the bus with unsuccessful retries, since they lost the critical
arbitration. The details of locking and waiting will be discussed in Section B.2.2.

High-speed Mcrnory-tc+Mcmory Transfer. Another new function introduced in
this report is to have a processor cache implement high-speed transfer from one location
in memory to another. As mentioned in Section A.2, this is motivated by Ousterhout's
statement that operating system designers greatly need a fast memory-transfer operation.
A cache can be used to implement this by reading a block from one location of memory
into its assembly register and then immediately storing tha block into another location of
memory (Figure 7). The cache simply needs to understand a command from the proces-
sor to do this, and then, in a multiprocessor system, follow its synchronization protocol
in reading and writing the block. The intelligence required of the cache is not great.
Further details are given in Appendix 1.

Switch Mediation. The two preceding purposes point to an interesting trend that iS
just beginning to be explored.

cess will be required for each block to claim write privilege (invalidate the other copies) at the time that
the block is written. Consequently, the update-by-block policy will usually incur two switch accesses, not
just one, per block of shared data. A stochastic model for evaluating the two update policies wiil include
all such relevant details.

0 Switch mediation: Give to the cache (instead of to other processor'hardware) func-
tions that entail switch interactions in czes where more efficient use of time, space,
or hardware will resu!t.

Thls strategy is especially useful under a broadcast system, where the cache has
hardware devoted just to monitoring the bus (or buses) and for responding to requests
that are broadcast there. The example of efficient busy-wait locking and waiting was
depicted above.

Another very similar example is that of priority preemption, discussed in Section C.1.2.
In this case, each cache (or other processor hardware) monitors the bus for the priority of
any process that is placed on a ready queue. If the priority of a currently running pro-
cess is lower than the latter priority, the monitoring hardware arbitrates for the bus, as
in efficient busy-wait, and if it wins - in this case, due to lowest priority - it interrupts
its processor. The process running there is switched out, and a process is loaded from
the appropriate ready queue.

B.1.2. Readflr i te Synchronization

Logical Aspects. As mentioned, cache synchronization consists of coordinating the
read/write sharing of replicated data among the caches. Read/wn'te sharing of repli-
cated data entails three logical aspects.

Atomicity: sole access for writers
Concurrency: shared access for readers
Replication: getting the latest version of the data upon access

A writer is given sole access so that its action appears atomic, all-or-none, to any subse
quent reader or writer. (A writer may also read.) Sole access is necessary for primitive
objects, while ordered access, analogous to pipelinihg, is possible for higher-order objects.
Readers are given shared access in order to maximize concurrency in accessing the data.
Finally, upon gaining access privilege to the da€a, the latest version must be fetched,
wherever it may be - in any cache or in main memory.

Implementation Requirements. These three logical aspects of read/write Vnchroni-
zation reduce to two implementation requirements.

Serialire conflicting access requests: write-read and write-write conflicts
Provide the latest version of the data: wherever it may be

The first requirement must be met in order for the second to have meaning.

1

Atomicity, Atoms. The concept of atomicity (realized through sole access to primitive
objects for a writer) is central to the problem of read/write synchronization, and can be
subdivided into two distinct types: that implemented by hardware and that h p l e
mented by software. Specifically, in order for software to implement an atomic opera-
tion (insuring sole access for a writer), the hardware must provide some primitive atomic

- 14 -

operation for the software to use. This can be as simple as writing a single bit, as in
Peterson’s algorithm (Peterson, Silberschatz 1985, p. 332). But for the sake of speed, the
hardware will probably provide at least a test-and-set operation or atomic swap, allowing
the software to insure sole access without so many bit reads and writes as otherwise
needed. In this context it becomes convenient to define two types of atomic (writable,
shared) data objects.
0 Hard atom: data object is atomized (access conflicts are serialized) by the hardware
0 Sof” atom: data object is atomized by the software

Hardware Role. It falls to the hardware, then, to serialize conflicting access requests
only for hard atoms. This situation occurs when two diEerent processes on two diEerent
processors simultaneously attempt to access the same hard atom (Figure 8). Providing
the latest version of the data, on the other hand, is required not only for writable, shared
data (hard and soft atoms), but also for writable, unshared data when a process runs on
one processor and then goes to sleep and is subsequently awakened on another processor
(Figure 9). In both cases, the latest version of the data must be gotten when the process
accesses the data.

The synchronization 01 caches, then, reduces to the foilowing two requirements, each
having the occasiok shown.

Serialize conflicting access requests: hard atoms only
s Two diflerent processes on two different processors access the same hard atom.
Rov ide the lafest version of the data: all writable objects
o Two diflerent processes on two dxerent processors access the same writable,

shared data (hard or soft atom).
o One process on two diflerent processors accesses the same writable, shared or

unshared, d a t a

B. 1.3. Broadcast

Full Broadcast, Broadcast is a hardware tool that% useful in the high-speed syn-
chronization or coordination of a group of devices, such as caches or processors. It is
most simply implemented with a bus for each broadcaster, carrying the broadcaster’s
message to all devices. Hence it requires n buses where the capability of n simultaneous
broadcasts is desired. Furthermore, in its full sense broadcast requires f u f f ussoeiufivity.

Full broudcusf - fulf associativity: A request is broadcast to all devices, since it is
not known which devices may be able to service the request. Every device evaluates
if it can service the request and responds appropriately.

* The innovative idea motivating the next section was to impkment a full-broadcast cache scheme in a
prrallel switch, and was conceived by Professor AI Dapain. George Adams md Steve Melvin oflend me
lurrher perspective on the potential of the average case - as opposed to the worst case.

- 16 -

This stands in contrast to partial broadcast, in which a proper subset of devices may be
addressed - only those that can service the request - so as not to interfere with the
remaining devices. Unless otherwise qualified, broadcast will henceforth refer to full
broadcast throughout this report.

For n simultaneous broadcasts, every device considers all requests at the time that a set
of broadcasts is initiated, and decides which, if any, it will service. With regard to
caches in particular, every cache that has control of one of the n buses at broadcast time
will broadcast its request to all other caches; and every cache will consider all of the
requests (except its own).

More specifically, in accessing all caches simultaneously, broadcast provides high-speed
implementation of the two hardware tasks in cache synchronization.

Sendire conPicting access requests - hard atoms only: Broadcast simultaneously
accesses all caches that have a copy of the hard atom.
Provide the latest version of requested data - a11 objects: Broadcast accesses the
cache having the latest version of the block.

At every switch setting, each cache that has access to a memory module broadcasts its
request (read/write/invalidate/etc. concerning a block address in that module) to all
other caches. So for a switch allowing n requesters, there must be n buses, one for each
requester's broadcast. Every cache will consider all n requests (except its own) and will
decide which? if any, it will service.

In the worst case, all of the requests, e.g., n block fetches, will resolve to the same cache
(Figure 10). The complexity of the cache will allow it to service no more than a few
simultaneous requests, say one or two, however, so the other requesters will have to try
again later. This is similar to the worst case for accessing main memory itself: in the
worst c s e for main memory (ignoring the caches), all requests go to the same module.
The switch will allow no more than one or two requests to the same module, however, so
the other requesters will have to try again later. In short, the success of. the parallel
switch in accessing main memory, as well as the success of n-fold broadcast in accessing
the caches, depends entirely on the average case. The parallelism should be implemented
only if stochastic and simulation models indicate that th; average cases of interest can
realize the concurrency offered by the parallel switch and memory.

Also note that under n-fold broadcast, the degree of associativity for each block frame
(represented in the switch directory) would be n, allowing n simultaneous addresses to
be compared. (n == min(max # requesters, # processors - 1)) The scheme allowing
maximal concurrency, considered by Rudolph and Segall (1984) and by Despain (personal
comm. 1984), would give each processor n smaller caches, one for each memory module.
A weaker dternative would be n cache directories, one for each memory module, where
hits are arbitrated. But the latter is functionally equivalent to having a cache directory
with n-way associativity for each block frame, as just described.

The principles of broadcast will be illustrated throughout this report by a system with a

- 16 -

single bus rather than a system with a parallel switch. The reasons are that broadcast in
a singlebus system is more feasible in terms of cost; it is easier to understand, and to
illustrate; and it has been implemented in singlebus systems.

Irrelevant Requests. The disadvantage of fulI broadcast is that a device, in particular
a cache, will be bombarded with irrelevant requests that arrive via the switch. A cache
cannot service such a request when the relevant block does not have the appropriate
status there. This bombardment can interfere with a processor's use of its cache. Conse-
quently, under full broadcast, a cache is given two control units, one for processor regis-
ters and one for switch requests; it is also given a separate directory for handling
requests from the switch (Goodman 1983), or else the cache directory is given dual-
ported read capability (Borriello et al. 1985).

Another approach to the problem of irrelevant requests is that of partial broadcast, in
which a list of all relevant caches is kept in main memory for each memory block (Cen-
sier, Feautrier 1918). The list is a bit vector indicating the caches in which the block
resides. So when a request is broadcast by a memory module, this presence list also sent
to all caches simultaneously, on the data lines of the switch, and each cache determines if
the request is relevant simply by checking to see if its bit is set. However, disadvantages
of this scheme are that memory is more complicated, both in terms of block structure
and control, and performance is substantially lower since all inter-cache transactions
must be mediated by main memory. For example, if a cache simply purges a clean
block, it must still access main memory so that its bit in the block's presence list is
cleared. In addition, this scheme does not lend itself to extension of more caches, since
the block in main memory and the switch datapath must be enlarged, if they are too
small. (The latter is probably large enough, though, namely four or eight bytes.)

B.1.4. Placement of Atoms in Blocks

Another issue in systems in which data caches serve as local memories is the placement
of atoms in memory blocks, which are the unit of cache management. The unit of
main-memory management may be variablesize logicah units (segments) or ked-size
physical units (pages) or a combination (Denning 1970). The same decision presents
itself in cache management, although the speed-cost tradeoff is viewed with heavier bias
toward speed, following Wilkes' original concept, and has resulted in strictly ked-size
units (blocks). Fixed-size units are simpler, and hence faster, to place, and it is simpler
to locate specific cells within them. And since spatial proximity or locality generally
holds, block-based designs are more useful than word-based designs.

- 17 -

The placement of atoms in blocks, then, emerges as a critical concern. The appropriate
strategy depends on the update policy - update-by-block or updateby-word.

Gndet update-by-block (write-back): An atom should begin at a block boui Ary, and
any memory block on which it resides should be devoted to it; unfortunately, internal
fragmentation will result.
Under update-by-word (wn’te-through): Atoms can be placed together in blocks, so
should be placed to improve locality of reference, if possible, as well reduce internal
fragmentation.

Just the same, in both cases it is desirable to fit an atom entirely on one block, if possi-
ble, so that a block fetch will not occur while the lock is locked and thereby prolong the
locking time. This will tend to generate internal fragmentation if block size is large rela-
tive to atom size.

More specifically, under an update-by-block policy, when a cache obtains sole access to an
atom on a memory block, it simultaneously obtains sole access to access the rest of the
data on the block. Consequently, if another cache desires access to the rest of the data
while the first cache desires access to the atom, the two access requests will conflict and
will be serialized, needlessly reducing concurrency. In the worst case, the two respective
processors will work on two different atoms in the same block, and the block will be
thrashed from cache to cache, as each cache, in turn, fetches the block for sole access
(Figure 11). It follows, then, that under an update-by-bIock policy, an atom should
begin at a block boundary, and any memory block on which it resides should be devoted
entirely to Archibald and Baer (1985) show through simulation that an updateby-
word policy indeed performs better than an update-by-block policy when the latter
causes a block to be thrashed from cache to cache.

However, this placement policy will tend to cause internal fragmentation of blocks,
worse if block size is large relative to atom size. The effect of fragmentation on cache
space is to waste part of a block, thereby increasing contention for cache space, which
will be worse for smaller caches (given a particular block size). In this age of switch
bottlenecks and relatively inexpensive memory, however, the worst effect will be on per-
formance, since an entire block must be fetched in order to obtain an atom on it,
thereby incresing switch traffic and, if the processor must wait for the entire block to
arrive, increasing the processor wait.

The performance cost of internal fragmentation can be reduced by fetching only part of
the block, namely a fixed-size sub-block transfer unit. Each transfer unit for a block
would have a valid bit and a dirty bit, allowing independent fetching and flushing,
respectively. .Studies have shown that the concept of sub-block transfer unit improves
performance in the access of unshared data (Smith 1982; Goodman 1983; Hill, Smith

This is true unless one can show that for specific atoms of interest, such contention would be small,
and that the complexity of implementing the exception is worth the cost. Appendix 4 also shows that
under a non-broadcast scheme, the blocks of a sort atom must be devoted entirely to the atom to insure
correctness - otherwise dushing one atom cap: overwrite the other in main memory.

1 0

1984) Hill and Smith offer extensive data showing the tradeoff between bus traffic and
miss rate: as the size of the transfer unit increases, approaching the block size, the bus
traffic increases but the miss rate decreases. Note, by the way, that the worst internal
f rapentat ion will occur for single-bit atoms, in particular, test-and-set bits. However,
the new locking method introduced in this report eliminates the need for test-and-set
bits, thereby eliminating the space and performance cost of this method of busy-wait
locking and unlocking.

Update-by-Block (Writc-Back) us. Updatoby-Word (Write-Through). The
issue of update-by-block us. update-by-word now acquires new connotations: the issue
should be evaluated for unshared and shared data separately, and for the transfer unit
size rather than the full block size (if the two are dxerent). The evidence cited in Sec-
tion B.1.1 shows that update-by-block significantly reduces bus traffic for unshared data,
which implies that the number of writes to a block tends to be significantly larger than
the tradeoff point. This advantage will not be so great for shared data, however, if
atoms tend to be small relative to block size. But with transfer units smaller than block
size, it may be possible for update-by-block to regain an advantage over updateby-word.

In short, it is necessary to determine the size that hard and soft atoms will tend to be
(hard atoms will tend to be smaller than soft atoms) and to determine their relative fre-
quency and how many writes each will tend to get. Based on this, the appropriate
transfer-unit size for shared data can be determined and compared to the size desired for
unshared data. If the two are close enough, then update-by-block wiil be appropriate for
both shared and unshared data. Otherwise, updateby-word will be appropriate for
shared data, as in the DEC Firefly and the Xerox Dragon (reported in Archibdd, Baer
1985).

- 19 -

B.2. Broadcast Systems for Cache Synchronization

B.2.1. Protocol Components 20
B.2.2. Protocol in Action 22
B.2.3. Protocol Evolution 35

As mentioned in Section B.1.3, broadcast will be considered in the context of a single-bus
system, for simplicity. First we will look at the necessary components of a broadcast
protocol, then we will turn to the states and mechanics of the new version introduced
here. Kext we will consider efficient busy-wait locking and unlocking and will analyze
problems with implementing the lock state, and will provide solutions. We will then look
at efficient busy wait, a new method using a busy-wait register, as well as other methods.
Finally we will retrace the evolution of broadcast protocols implemented under an
update-by-block (write-back) policy, considering the schemes of Goodman (1983), Frank
(1984), Papamarcos and Pate1 (1984), Katz et al. (1985), and the present.

B.2.l. Protocol Components

A broadcast cache-synchronization protocol must include the following components.
Requests for a processor to give to its cache
Requests for a bus master (cache or processor) to broadcast on the bus
Responses of a cache to the processor and bus requests
Responses of main memory to the bus requests
States and state transitions for a cache block

A cache synchronization protocol also includes three basic request-response sequences,
along with states and state transitions for a requested block.

Request-Response Sequences. The request-response sequences are the following.
Rocessor request to cache, no bue access needed: A fiocessor makes a request to its
cache, and the cache services the request without needing to access the bus.
Processor request to cache, bus access needed: A processor makes a request to its
cache. The cache needs to access the bus in order to service the request, so it arbi-
trates for the bus, and when master, broadcasts its request on the bus. All other
caches and main memory respond appropriately, one of which provides the latest ver-
sion of the data, if requested. The cache then replies to its processor.
I/O-processor request lo bus: An 1/0 processor bypasses its cache (if it has one) and
broadcasts an 1/0 request on the bus. All caches and main memory respond
appropriately, one of which provides the data, if requested.

Keep in mind that in order to reduce traffic on the bus, it will be assumed that the cache,
policy for updating main memory will be update-by-block (write-back) rather than

update-by-word (write-through), as discussed in Sections B.1.1 and B.l.4. 'Just the same,
as pointed out in Section B.1.4, several parameters of a system must be estimated to
determine if update-by-block will be as effective for shared data as it is for unshared
data. Also, in order to reduce contention €or the caches generated by irrelevant requests
under the full broadcast scheme, it will be assumed that each cache has dual directories
or a dual-ported-read directory, as discussed in Section B.1.3.

States. We will consider the Zollowing eight states €or a block in a cache, and Section
B.2.3 will show how the states in other protocols relate to these eight.

Invalid

Read
Read, Source, Clean
Read, Source, Dirty

Write, Source, Clean
Write, Source, Dirty

Lock, Source, Dirty
Lock, Source, Dirty, Waiter

The €allowing is a key to the word meanings, which will be cieariy illustrated by
pies in Section B.2.2.

Invalid Meaningless
Read
Write
Lock
Source

Read-only privilege (shand-access privdege - for multiple readers)
Read and write privilege (sole-access privilege)
Read and write privilege, locked by the cache
Source of latest version of block

Location of clean/dirty status for the block

exam-

When the block b fetched by another cache, the source provides it and
its current clean/dirty/lock status

When purging the block, the source flushes it if dirty

cache system
Another processor is waiting for the block to be unlocked

Dirty/Clcan BIock was/not written by some processor since read from memory into the

Waiter

-
Keep in mind that the goal is to enumerate promising possibilities. Although eight states
are of interest here, not necessarily all statcs will be implemented in a particular Sy8-

tern.

First, if the system is built from on- the-uhel~pr ts , the capabilities of those parts may
limit the implementation. The most critical component, here, is probably the bus: the
capability of the bus can greatly limit the designer of a &he synchronization protocol,
because it may not allow them to signal all of the codes that they would like to. The
most notable example is probably that of Goodman (1983). Goodman designed his cache

- 21 -

protocol for the original Multibus, and this bus does not give the user a way to explicitly
signal block invalidation while fetching a block. As a result, Goodman used the write
operation on the bus to signal invalidation (J. Goodman, personal comm. 1985).

Second, the cost of implementing each state must be weighed against the improvement in
performance that i t will offer in the system at hand. TO illustrate, consider the use of
the clean source states (read and write) as opposed to having just dirty source states. If
a cache is the source of a block, it will provide that block when another cache requests
it. Such a request to a cache will reduce the cache's availability to its own processor.
thereby creating contention for the cache - contention between the processor requests
and the bus requests. Since the block is clean, the latest version also resides in main
memory, from where it could alternatively be fetched. However, suppose that a fetch
from memory is much slower than a fetch from another cache. Then if the requester
must hold onto the bus while waiting (because the address/data phases for a read are not
split), the bus contention generated by fetching from memory can be worse than the con-
tention for the cache generated by fetching from the cache. Also, if the requesting
processor's cache does not implement prefetch, then a fetch from memory, as compared
to a fetch from another cache, will entail a much longer wait for that processor - even
if bus traffic is minimized by splitting the address and data phases.

In short, the clean source states are implemented only if fetching from another cache is
sufficiently faster than fetching from main memory. If this is not true, then the read-
source-clean state should be eliminated, using the plain read-state instead, and the
write-sourceclean state should be changed to write-clean.

B.2.2. Protocol in Action

The state transitions will be illustrated with figures and a table now, clarifying the
behavior of the caches and the rationale behind the state features. The full details of the
processor requests, cache responses, and bus commands are deferred to Appendix 2.
Throughout the discussion, the inventors of each feature will be cited.

Figures. The request-response sequences shown in the figures illustrate the interaction
of the processors, caches, and memory. Keep in mind that the last cache to fetch a
block becomes its source, and provides the block when the block is next requested by
another cache (unless the source purged the block in the meantime).

%

No Source. Figures 12 and 13 show that if there is no source cache for the block, even
if the block is. present in another cache, the block is provided by memory. Furthermore,
the requester cache assumes read/wn'te/lock privilege for the block if the processor's
request is rcud/write/lock, respectively. But if the request is for read privilege, any
cache that has the block signals hit; otherwise the requester will assume write privilege,
as described in the next paragraph. Under the Papamarcos and Patel (1984) scheme,
any cache that has the block (that signals hit) is a potential source. These caches then

J

arbitrate and the winner becomes the actual source. The two approach& will be c o n
pared in Section B.2.3, Feature 8.

Figure 14 shows that if the request is for read privilege and the block is not present in
another cache, on the other hand, the requester assumes m 2 c privilege, so that if its
processor subsequently writes the block, a bus access will not be required in order to
obtain write privilege. The main use of this feature is in fetching unshured data.
Papamarcos and Pate1 (1984) introduced this feature, and Goodman has suggested using
it as it is used here (J. Goodman, personal comm. 1985). Alternatively, as will be d b
cussed in Section B.2.3 (Feature rj), fetching unshared data for write privilege could be
determined statically (Katz et al., 1985).

Source. Figure 15 shows that there is a source cache for a block, the source provides
the contents of the block, if requested, along with the clean/dirty/lock status of the
block. The presence of this status on the bus signals the presence of a source cache.
Figure 16 shows that if the requester cache already has a valid copy at a processor write,
it only requests write privilege, not the block itself.

Censier and Feautrier (1978) suggested the idea of direct cache-to-cache transfer in the
context of a system without full broadcast. While Goodman (1983) implemented cache
to-cache transfer in the context of reaiizhng the rich capabilities of iuil broadcat.

1 /0 Transfer. An 1/0 transfer is the resuit of a request made by a processor that
desires to have data transferred into or out of the memory-cache system. The processor
has designated the memory area and, if the data is shared with other processoIJ, has syn-
chronized the request with the other processors. Consequently, if an 1/0 processor is
reading or writing a block of data, no other processor is writing the data, and no proces-
sor has the data Iocked in its cache (except in the case of bugs).

In executing an input operation, an 1/0 processor will simply invalidate the block in all
caches as it writes to memory, while in executing an oufput operation, the 1/0 processor
will fetch the block for write privilege, thereby invalidating the block in all caches.'

For the sake of speed, i f un I/O processor has u cache,% should not use the cache as an
intermediary in an 1/0 operation, but instead should transfer directly between the bus
and its private buffers. In this case, the 1/0 processor's cache must respond like my
other cache in the system, providing the block if necessary, as well as invalidating it. So
either the 1/0 processor should have its own sqarute inter/ace to the bus, independent
of its cache, for use in 1/0 transfers, 30 that its cache will respond as usual to the bus
requests. Or else the 1/0 processor should have two qeciul read und write communds
for its cache, signaling 1/0 read and write, as opposed to normal read and write. The
second design may add substantial complexity to the cache, both in terms of control and

' Another possibility is not to invalidate, and to update the caches on input. But the performance
if any, may be too small to warrant the cost of extending the protocol.

- 23 -
~ -~

datapaths, but the first requires a separate interface just for I/O.

By the way, the reason that an 1/0 processor will probably have a cache in a multipro-
cessor system is that its processes must synchronize with processes on other processors.
and it will probably be simpIer and more efficient to do so using synchronized access to
shared memory, rather than hardware signals. In this scenario, an 1/0 processor would
receive service requests from a servicerequest queue, and would reply to the requests
after servicing them, say by moving a sleeping process to a ready queue.

Efficient Locking. Figure 17 illustrates how busy-wait locking is efficiently executed.
The first block of the atom is fetched for write privilege and locked until the entire
operation is done. Conflicting access requests are serialized by the bus when a block is
locket, and the cache supplies the target word as on a read instruction. Further, as
shown in Figure 19, the unlock can occur at the final write to the block. So the lock
instruction is a special processor read instruction, and the unlock instruction may be
implemented as a special writ.e instruction. An unencoded way of doing this is to devote
a separate processor line to the function, which will be interpreted by the cache as lock
on a read and unlock on a write.

If another cache attempts to fetch the atom during this time, it will request the first
block and find it locked, and the locker cache will record that another cache is waiting,
using the lock-waiter state (Figure 18). This will only require accessing the bus directory
of the cache in which the block is locked since lock-waiter, as well as lock, status needs
to be maintained only in the bus directory. Consequently, the access will be very fast
and will not interfere with the processor’s use of its cache - in contrast to the fetching
of an actual data block containing a test-and-set lock bit. The requester cache, then,
enters the block address in a special busy-wait register in the cache, thereby setting the
stage for efficient busy wait.5

In short, locking involves the lock and lock-waiter states.
Lock state: The first block of the atom is fetched and locked in the cache until the
operation is done.
Lock-waiter state: An unsuccessful request from another cache for a locked block
changes the state from lock to lock-wczitet.

Process Switching. Under the above protocol, if a process holding a busy-wait lock were
to be switched out, it would have to be loaded back into the same processor because that
is where its lock is. However, this is not a problem for the following re8son.

Under any locking scheme, especially busy-wait locking, it is important to preclude
the switching of processes (or threads of control) while a lock is held, in order to

An option here is to implement hint read. In this case, a cache can fetch a word from a leeeked block
in another cache, and pass the word on to ih processor. Setting of the busy-wait register, that 5, waiting
at all, could also be made optional, if desired.

- 24 -

avoid prolonging the time for which other processes may have to waft for access to
the atom.

This is achieved by disabling the appropriate i n t e m p t s (not all traps), by not requesting
1/0 in the atomic section of code, and by avoiding page faults while executing the
atomic section. Page faults are avoided by having the compiler insure that no atomic
section or hard atom crosses a page boundary. Or else, in the case of a process queue
with dynamically-allocated entries, the descriptor and the entries should be memory
resident - as they are in C'nix, where the entries are process control blocks (Peterson,
Silberschatz 1985; Denning, Dennis, Brumfield 1981). This also gives another reason for
disabling certain interrupts: if a process queue, like a ready queue, is locked and an
interrupt handler would require accessing that queue, ths handler would be unable to
gain access.

The lock/unlock instructions are actually lockdisable and unlock-enable, each taking an
interrupt-mask, as well as an address and a register operand. The lock-disable instruc-
tion disables interrupts only if the lock is obtained, and the proper use of these instruc-
tions is insured by the assembler or compiler.6

Purging Locked Block. There is a problem with the lock-state scheme in a cache whose
sot size is not !arge: Q !&ed block m y m e d !e be purged, h which case the lock will
vanish. So for a cache that is not fully associative, a lock bit should be implemented for
the first block of the atom. It will either be a hardware tag bit on each memory block,
or else a bit in the first cell of the block itself. The compiler already understands that
atoms must start on block boundaries (Section B.1.4). So if the lock is a data bit, rather
than a hardware tag bit, the compiler will also understand that this bit in the first block
of a busy-wait atom is reserved for hardware use. If necessary it will reserve the entire
smallest addressableunit containing the bit.

Under this scenario, when a block is locked by the cache, the cache not only sets the
block's status to lock, but also sets the block's lock bit. Consequently, if the block must
be purged when locked, the lock will not vanish, for it will be flushed to memory. If
another cache subsequently fetches the purged block to lock it, it will first test the lock
bit. If the bit is set, it will understand that the block blocked, just as if another cache
had informed it, and it will take the same action as it would otherwise take, and will not
store the block. If the processor that locked the block requests further access to the
block before unlocking it, this read or write will cause the block to be fetched and stored
in the cache with lock-waiter status.

Just the same, for the sake of exploration, it might be noted that process switching whik hoiding 8
busy-wait lock could be d l o w d if the protocol w e n extended. Specihcdly. suppose then wen 8 bas corn-

. maad Lock to be used when a processor seeb to bck 8 block. Then the Lock command woald be refwd
if the rrquested block w e n already locked, whereas 8 R d or Write command on the bus woald cause 8
locked block to be t r a n s f e d to the requester cache and locked tbet. k this case, 88 process hoidiog 8
block were to wake up on mother p r o c w r , it will get the locked block simply by reading or h h g it, a
usual. In addition, the Unlock command would unlock the block even if the block were in another cache.

- 25 -

When the processor that locked the block finally tells its cache to unlock the block, if the
block is no longer in the cache, the cache will simply write the final word (which may
accompany the unlock instruction) through to memory, clear the bit in memory, and
simultaneously broadcast the unlocking on the bus. If the bit is a hardware tag bit or if
an addressable unit of the block is devoted to the bit, the cache will not need to fetch
the bit; instead, it can just write a zero to the bit.7

Ezplicit vs. Implicit Locking. Under ezplicit locking, an explicit indicator of the lock
status is set to lock and unlock when appropriate, whereas under implicit locking, the
entire cache or memory module containing the data is held under soleaccess by holding
its port (or ports) during the atomic operation. Implicit locking can be used for imple-
menting a processor atomic read-modify-write instruction; however, it suffers from
several serious constraints, none of which are present with explicit locking.

Specifically, the advantages of explicit over implicit locking include these.
Fine-grained locking: Only the target atom is locked (under the cache lock-state
scheme), not the entire cache or memory module, thereby allowing maximal con-
currency in access to cache or memory.
Traps permissible: Traps do not require aborting the atomic operation, as they do
under implicit locking (although process switching should be precluded anyway, as
explained above).
Multiple blocks and modules: The atom can span several blocks and several cache or
memory modules, rather than being restricted to just one - though spanning should
be avoided where possible, just the same, to reduce the lock-holding time.

Furthermore, under the cache-state method of explicit locking, ezplicit locking is as just
as implicit locking. This is because a block can be locked on the first read to it and
unlocked on the final write to it, so both locking and unlocking can be concurrent with

’ Several technical points include these. (1) The “L” response in Figure 18 need be nothing more than
the lock bit itself. (2) The lock value in memory is rekrant only when the block k not in a cache. Conse-
quently, that value needs to be updated only when the block is purged (of course), or if the lock is un-
locked while the block is not in a cache. (3) Just the same, if the lock values are always updated in
memory when changed, these values may aid in crash recovery. (4) If, contrary to the approach advocat
cd here, the lock state were used, not to eliminate testand-set but to implement testand-set, and if that
were the only use of the lock state, then purging a locked block would never be a problem, so the extra
lock bit would not be needed. (5) If it is desired to insure hardware protection against software errors
that attempt to read or write a locked block, a lock could be an entire processor ID. rather than just a
bit. For, as mentioned, process-switching is precluded while a busy-wait lock is held. (6) Two other msL
ble solutions to the problem of purging a locked block are these: rufRciently l u g e set size or associative
lock registers. Specifscally, consider the potential nesting of traps during program execution. At each
nesting level (from zero to the maximum possible n) at most one block will be locked by that level under
a busy-wait policy, in order to avoid long lock-holding times. In addition, since process-switching dis-
abled, the maximum number of blocks that will ever be locked at a time in a cache is n. Consequently, if
the cache set rite were n+l , a locked block would never need to be purged. Alternatively, the cache
could have n fully mociative lock registen containing the needed information on each lock that is held.
The problems, here, are determining n, and if n can be determined, the possible large value of n.

- 26 -

necessary reading and writing of the data. In particular, this overlap will always occur
for pr0c-r atomic read-modify-write instructions that could otherwise be implemented
using implicit locking, since an atom for such an instruction must be contained entirely
on one block. Therefore, cache-state locking should be used to implement processor
atomic read-modify-write instructions, as well as programmer/comp~fer-implemented
busy- wait locking.

Simple w. Compler Instructions for Atomic Operations. One may wish to consider
whether a single read-modify-write instruction is better for an atomic operation or
whether several instructions are better. This is the issue of simple us. complex instruc-
tions, or reduced-instruction-set us. complex-instruction-set approach to processor design
(Patterson 1985; Colwell et al. 1985). Here the issue is applied just to atomic read-
modify-write operations. Without resolving the issue, I will point out several advantages
of the simple-instruction approach.
0 Simpler instructions: no atomic read-modify-write instructions, just ordinary

instructions
Fewer insttuctions: no atomic read-mdiy-write instructions, just a lock-disable
instruction and an unlock-enable instruction (or two unlock-enable instructions, one
that writes a word and one that does not)

8 E'sij irnpIzrneniation of new aiomic operations: no need to microprogram; just write
macro-code for a program or compiler to implement

In any case, whether the simple or complex instruction approach to atomic operations is
taken, the cache-state method offers the most efficient locking and unlocking method.

Zero-Eme Locking/C/nlocking. Under the lock-state method, a separate block fetch for
the lock bit is not required if the bt block of the atom is to be read, since fetching that
block is overlapped with fetching the lock. But in addition, separate cache accesses to
lock and unlock an atom can be eliminated if the first read and the last write of an atom
are to the first block of the atom, since-locking and unlocking can then be overlapped
with the first read and the last write, respectively. How often will these last two occa-
sions for overlap occur (thus implying the first)? Let us consider this question in the con-
text of each of the two reasons for busy wait, in turn.

-4 situation where busy wait is fcss costly than sleep wait
.4 system where busy wait is necesua y to implement sleep wait

-
In a situation where busy wait is fcss costfy than sleep wait, the atom is probably con-
tained entirely on one block since this kind of operation is intended to be very fast, espc
cially if implemented as a processor atomic read-modify-write instruction.* Just the
same, the speed only needs to be better than that for implementing sleep wait. If sleep
wait is implemented using busy wait (instead of P/V hardware, described in Section
C.l), then it will probably entail several block fetches, as well as reasonably long wait
times and processor operations. So in this case, a detailed analysis of the cost of s k p
wait may justify using busy wait on an atom that is not contained entirely on one block.

* If an atomic red-modify-write instruction were implemented using implicit locking, the atom most be
contained entirely on one block to avoid very complicated cache hardware, very low concurrency lock&

But without such an analysis, a reasonable d e of thumb is to limit this operation to
atoms that are contained entirely on one block, or sub-block transfer unit, so that data
misses will not occur during the operation and thereby slow the operation down. In the
case of sub-block transier uuits, described in Section B.1.4, blocks will tend to be larger,
so even if one wishes to allow data misses during busy wait by allowing an atom to span
transfer units, the chances of fitting the atom entirely on one block are greater anyway.
The upshot is that if the atcjm fits entirely on one block, the first read and last write to
the atom will both occur to the first (and only) block of the atom.

In a system where busy wait is necessary in order to implement sleep wait, the atom is a
process queue, probably dynamically-linked, as in Unix (Peterson, Silberschatz 1983) and
in Denning, Dennis, and Brumfield (1981). In any queue, the first block of the atom con-
tsins the queue descriptor, and since a block probably contains at least two four-byte
words, there will be enough room for a head and tail pointer, or one pointer and some
additional information. The descriptor will always be read first. In addition, if the
descriptor is written, it can be written last.9 But if the descriptor is not written, the
unlock must, indeed, cost an extra access.

To get a feel for whether the descriptor will be written, let us consider several queue
implementations.

FIFO: the descriptor will be written on both insertion and deletion
Priority - linear sorted list: the descriptor will be written on deletion, but not
necessarily on insertion
Priority - binary tree or heap: the descriptor (which points to the tree root) may
be written on insertion and deletion
Priority - array of linked lists, each list covering a priority range: the descriptor
will indicate the highest range that contains a non-empty list (for fast deletion), so
may be written on insertion and deletion

We see, then, that under both occasions for busy wait, the first read and the last write of
an atom will probably occur on the first block of the atom.

Having developed an efficient scheme to lock a block - and an efficient scheme for
another cache to initially find out that the block is locked - our concern now turns to
efficient busy waiting for a locked block.

I

(locking an entire module for a prolonged period of time), and the potential of deadlock among caches in
such a state. The lock state, fortunately, avoids all of these problems.

In some cases, the descriptor must be written last. If not, there is some chance of incurring a miss if it
is written last, but this cost should be negligible since the number of blocks referenced by the processor
during the time of locking should be smd1. Or from a high-level point of view, if the miss rate on the
atom blocks just fetched is not negligible, the cache is probably not very effective overall.

Eacienf Busy Wait. Three proposals for efficient busy wait will be considered.
Busy-uait register (introduced here): wait for unlocking, then arbitrate; winner
locks lock; losers continue waiting
L;pdate-bydlock (wn'fe-back): inuafidate other caches on a write, namely, when lock-
ing or unlocking a lock

0 C+datedy-tuord [write-through): update other caches on a write, namely, when lock-
ing or unlocking a lock

Keep in mind that aithough the first method is advocated here, the other two methods
can be integrated with the lock state by modifying the lock-state protocol appropriately.

Busy-Wait Register. There are two purposes in efficient busy wait.
Eliminate unsuccessful retries from the bus
Relieve a waiting processor of polling the status of a lock, allowing it to work whie
waiting

When a process is busy waiting, it is running. However, it should not access the bus in
order to retry, but should wait for the unlocking event to be broadcast on the bus, and
then respond appropriately. Furthermore, since the process is running while waiting, it
is best if it can do useful work during this time, instead of polling the lock status. This
can be arranged by having the process prejefch the atom - requesting the cache to
fetch and lock the first block just before the process is ready to use it. More generally, if
a section of code can be specified such that the process is ready to access the atom while
executing the code, then the process can execute this ready section while waiting for the
interrupt from its busy-wait register.

In considering efficient busy-wait methods, one may challenge, "What is all the fuss
about? Busy wait should not last that long, since long waits are implemented using sleep
wait, not busy wait." On the surface this is a good point, but it is countered by the
second of the two reasons for using busy wait:

A system where busy wait is necessury in order to implement sleep wait
The manipulations of the sleep-wait and ready queues that must be accessed in order for
the software to implement sleep wait may require several,block fetches, say three or four,
per queue. And in addition, there m a y be quite a few processes that access each queue,
especially the ready queue, thereby generating high contention for the queue. Efticient
busy wait addresses this situation. (On the other hand, efficient sleep wait, considered in
Section C.1, eliminates the need for busy wait, along with the substantial time overhead
incurred by that method.)

When a locked block is unlocked, this action is broadcast on the bus if the state in the
locker cache is lock-urcriter - indicating that another processor had requested the block
while it was locked (Figure 19). A busy-wait register waiting on that lock recognizes the
unlocking, and then initiates a 6us aditrution. In this case, the winning cache will fetch
the block for write privilege, lock the block using the lock-waiter state (since that will
probably be appropriate), and interrupt its processor; while the other caches will let their

- 29 -

processors 'continue whatever they are doing and will not access the' bus, making no
attempt to fetch the block again (Figure 20).

Regarding the bus arbitration, after the unlocking, the next bus arbitration will give
priorioy to those caches that are waiting for the lock. This can be easily implemented by
having those caches specify very high priorities, say by devoting the most significant
priority bit for this purpose - only the relevant caches will set i t to a logical high.
Then if it turns out that there are no waiters after all (because the waiting processors
were switched out of their processors), the arbit,ration will proceed normally, with no
wasted time.

This method of busy wait meets the two efficiency requirements fully.
Eliminates all unsuccessful retries from the bus
Allows a processor to work while waiting1°

rpdate-by-Block (Write-Back). LTnder the standard update-by-block protocol for efficient
busy wait, a block is invalidated in other caches when the block is written. Censier and
Feautrier (1978) may have been the first to suggest this method of busy wait; while
Sequent has implemented it in the context of an update policy that writes each word
through to memory but invalidates other caches rather than updating them (System
1984; Guide 1985). (-USO, under the Sequent system, memory, rather than the processor,
executes the atomic test-and-set instruction.)

-4 version of this busy-wait method developed by Yale Patt (personal comm. 1985) is
estended here by explicating mechanics for a processor atomic read-modify-write instruc-
tion in a cache. The result is that the number of unsuccessful retries on the bus is
reduced to the minimum possible under this approach to busy wait, namely one retry for
each waiting processor at each unlocking of a lock.

Under this method, when a processor accesses a lock bit to set it, its cache initially
assumes read, not write privilege (shared access, not sole access), in case other processors
are also waiting on the bit in their caches. Each processor waiting on that bit continues
testing its copy in its cache until the block is invulidutek That is, when the bit is to be
cleared, the processor that set the bit no longer has write privilege (sole access) to the
block, so it must go to the bus and get write privilege, i.e., invalidate the block in the
other caches. Each waiting processor, therefore, will automatically generate a miss at
its next test of the bit, so its cache will fetch the block for read privilege. However, the
miss should initiate an atomic read-modify-write action under which the cache will hold
the bus while the processor tests the bit. If the bit is zero, it will be updated to one; oth-
erwise the instruction will just abort, and the processor will resume testing as before.
Each waiting processor after the first to acquire the bus will therefore read a value of

lo Xote, just the same, that if one did not want to allow for the possibility that the processor may have
work to do while waiting, the processor could, alternatively, poll the busy-waitregister signal.

- 30 -

one, SO will continue testing as before.

The hardware complication, here, is that there must be u special retad-modify-wn'tc pro-
tocol, distinct from the normal protocol, just to implement efficient busy wait. Normally
a read-modify-write protocol takes effect at the read whether there is a hit or miss: the
block is fetched for write privilege at the read, or else the bus is acquired a t the read and
is held through to the write, at which time the block is fetched for write privilege (Sec-
tion B.2.3, Feature 6). Both of these normal protocols, however, subvert eEcient busy
wait. Hence there must be a special protocol for busy wait, under which the cache ini-
tiates an atomic read-modify-write action only if the read generates a miss, as above.

The two performance advantages of the busy-wait register scheme, given earlier, imply
corresponding disadvantages of the standard update-by-block scheme. The first disad-
vantow is that at every unlocking all processors waiting on the lock, except one, gen-
erate unsuccessful retries at each unlocking, each retry requiring a block (or transfer-
unit) fetch. So if the mean number of processors waiting on the lock is n, then the mean
number of unnecessary block (or transfer-unit) fetches at each unlocking is n-1." The
second disudvuntage is that a waiting processor must continually test the lock bit,
thereby wasting its time if it has useful work to do.

L.'pdate-6y-Word write-Through). Rudolph and Segall (1984), along with the DEC
Firefly and the Xerox Dragon (reported by Archibald and Baer 1985), implement ver-
sions of the update-by-word scheme. This approach allows efficient busy wait by apdat-
ing other caches with the new values of the lock as they are written, thereby removing
the need for each waiting processor to access the bus and fetch the entire block (or
transfer unit) when the lock is unlocked. (The reader map wish to review the issues
regarding the two update policies, as presented ia Sections B.13 and B.l.4.)

Rudolph und SeguN orient their entire protocol toward efficient busy wait. Specifically,
when any block is fitst written by a processor, the write goes through to memory and to
all caches, updating all caches that contain the address. Whereas, when a block is writ-
ten a second time (or more generally, the n th time for some n), the block is invaliduted
in other caches. This implies that when a lock bit is ckared (unlocked), it will be the
second tLr'te to the block, so the block wiU be invalidated in ad other caches. The 6rst

l1 Suppose, in contrast, that the special atomic red-modi-write protocol introduced above w e n not
used; instead a processor tests the bit and if it is zero tien initiates an atomic read-nfodify-write action
under a normal read-modify-write protocoL In this case, each waiting pracessor must make two bus
accesses at an unlocking, the first for the initial test, which rill probably md 8 zero, and the second for
the read-modify-write, which may read a one since another waiting processor may have set the bit k the
mtmtime. The Bnt access wiU require a block (or transfer-unit) fekh, and the second will requk the
same - except for the processor that aeb the bit, which rill rimply require invalidation. Hence the mean
number of unnecessary block fekhes will be 2(n-l) iasrcsd of the n--1 mqaired by the specid mad-
modify-write protocol given above. Just the same, under the specid protocol, each waiting pnmrror must
hold the b w whik testing the bit, and thm rill take some the if it cannot be overl.pped with the fetch of
the rest of the block (or tMsfer unit). If this time approaches that of the arbitration and fetch, then the
special protocol IS of little value.

- 31 -

processor to fetch the block, then, will make the first write to the block (using an atomic
read-modify-write) to sei (lock) the bit and will update all caches of processors waiting
on that lock, allowing those processors to continue busy-waiting in their caches without
accessing the bus.

An atomic read-modify-write instruction, in this scheme, is identified as such to the
cache and goes through to the bus as such, maintaining sole access to a memory unit,
using explicit or implicit locking on that unit. Because of this, all unsuccessful retries are
eiiminated from the bus using the foregoing protocol.12

The DEC Firefly and Xetoz Dragon implement the following innovative update policy.
0 Update-by-block (writc-back): for unshared blocks (copies in no other caches)

Update-by-word (write-through): for shared blocks (copies in other caches)
0 Update other caches: Firefly and Dragon
0 Update main memory: Firefly only

Both schemes use the bus hit line (described earlier) on bus wn'tes, as well as on bus
reads, to detect shared/unshared status for a block. Section B.1.4 presents further dis-
cussion of the general performance of this scheme.

Summary.
introduced.

Efficient locking

Efficient methods of busy-wait locking, waiting, and unlocking have been

0 Erne cod: probably zero - the lock and the first block of the atom are fetched
concurrently; locking is also concurrent with the first read of the atom if that read
is to the first block (as it probably is)

0 Memory cost: little or none - a free cache state, and if necessary, a hardware
tag on each block, or one bit (or addressable unit) of a busy-wait atom

0 Control c o d : the cache bus control-unit must lock blocks; the bus must have a
code for locked

Efficient waiting
Erne cost: little or none - no unsuccessful ret&; work while waiting (if possi-
ble)
Memory cost: associative busy-wait register in each cache
Control cost: a match in the busy-wait register motivates bus arbitration, and if
won, a processor interrupt

. Rudolph and Segall also have block fetches update any cache in which the block has invalid status.
However, this b not necessary for eacieat busy wait, so the motivation for the feature is not clear to me.
They also specify one-word blocks, probably to minimize internal fragmentation due to the devotion of
one block to each busy-wait lock, as discussed in Section B.1.4.

- 32 -

Efficient unlocking
3 Erne cost: probably zero - unlocking is concurrent with the last write to the

atom if that write is to the first block (as it probably is)
n Bus access: only if needed because of a waiter
n Control cost: the cache bus control-unit must unlock blocks; the bus must have a

code for unlocked
Finally, as stated earlier, although the busy-wait register method of waiting is advocated
here, the other two waiting methods (update-by-block and updateby-word) can alterna-
tively be integrated with the lock state by modifying the lock-state protocol appropri-
ately.

Table. The preceding examples illustrate the capabilities that can be given a broadcast
cache protocol, while Table 1 summarizes the corresponding state transitions for a block.
In order to avoid cluttering the table, the following transitions are omitted.
0 Source: A cache that fetches a block becomes its new source.
0 Cfcan/Dirty: When a processor writes a block, the block becomes dirty (if not

already dirty).
Lock Waiter / Busy Wait: When a locked block is requested by another cache, the
status becomes lock-waiter in the cache holding the block, and the requester's hqp
wait register is loaded.

Table la, for example, shows that if a cache places a read request for a block on the bus
and the status for the block in another cache is write, the new status for the block in the
requester cache becomes read. Table 1b shows that for the same situation, the new
status for the block in all other caches containing the block (including the source) b
read. Since the source had write privilege for the block in this example, though, it done
had a copy of the block in this case. Appendix 2, finally, offers fine details of the
requests and responses in the protocol.

- 33 -

-

Table 1. State Transitions for Cache Block

Cache
request

to bus
Read

Write
Lock

Table la.

Initial Status in Other Cache

Invalid Read Write Lock
Invalid Read Read Lock
Invalid Invalid Invalid Lock
Invalid Invalid Invalid Lock

New Status in Requester Cache

Initial Status in Other Cache Cache I
request

to bus
Read

Write
Lock

Invalid Read Write Lock
Write' Read Read Invalid
Write Write Write Invalid
Lock Lock Lock Invalid

1. Write privilege is assumed if the block is invalid (or absent) in all other caches; other-
wise read privilege is assumed.

B.2.9. Botocol Evolution

KOW let us explore the evolution of broadcast update-by-block (write-back) protocob.
Table 2 traces key steps of this evolution, and has two parts, the upper part showing the
evolution of states, and the lower showing the evolution of other features. The states
and the features will be discussed in turn, following a presentation of overall perspective.
Keep in mind that most of the features were discussed in Section B.2.2, to which the
reader may return when helpful.

Overall Perspective. The information on the cluesic approoch (column 1) is taken
from Censier and Feautrier (1978) who give no reference to the literature in this regard,
so their word is accepted at face value. The c h i c approach does not necessarily imple-
ment updateby-block (write-back), but it does implement a form of broadcast, dong
with dual directories. Specifically, a write action in a cache is broadcast on a high-speed
bus to all other caches, which will then invalidate the corresponding block if it is valid
there. This scheme does not, however, guarantee that codicting access requests for sim
gle reads and writes (to hard atoms) will be serialited. The classic approach uses identi-
cal dual directories to eliminate the interference of irrelevant requests.

The other schemes shown in Table 2 follow the dualdirectory approach, (Featan 3)
although Goodman (1883) and Frank (1984) independent!y reinvented it (J. Goodman,
personal comm. 1885). Goodman also implemented the uourcc function, or direct cache-
to-cuche transfer, under an update-by-block (write-baek) policy (Feature 1). In this
case, one cache provides the data directly to another cache that requests it, if the hst
cache has the latest version and has not yet updated main memory. Censier and Fcra-
trier had suggested this as a possibility, but Goodman was evidently the first to implc
ment it, and Frank's protocol also d e s it possible. Papamarcos and Patel developed
their scheme from Goodrmm's; Katz evolved their scheme from Frank's and Goodmaa's;
while I attempt to identify the most p r o m t i g features of each, as well as add new inn+
vations.

- 36 -

lnvriid
Vdid
Diny (for updaLtby-block)

R e d *
Red. Ckm
Red, Dirty'

Write, Clem
write. Dmy'

Lock. Dirty'
k k , Dirty, W.iterD

Fartura

N N
N
N

N

N
S

1. Updateby-block; d u d control unit.; cuhc*uehe
trmarer; merialitation or condi ing ria& rud. and writu

2 Fu&-diitributed m b k idormation: valid / md / writ . /
lock / dkty / source status (V/R/W/L/D/S) (fartu rupanrc of
codu; p a l a c o n r d i d d a of rtatc in/ormotia; rim$- manary)

8. Dmtoy Durlity: 2 Identical Dud (ID) / 2 Non-Identied
Dud (MD) / 1 Dud-Ported-Red (DPR). (DPR reducer Lke
kardwarr; NID dimin&o intcrf~euee due lo updeting otalur -
diirly rlatur ir d y in pocuror d i n d o r y . wails rlalur u a d y in
bur directory)

4. Bus invalidah a@& no need for invalidation rritcthrougb
O n write hit: Cain write privikge with a onccyele invalidation
(inrtcad of a word-wile Lo m r p)
On write miu: Gaia writ. privilyc while retching block (i n d u d

5. Fetching data for write privilege on read mb.:
U n a h d drt.: nnshued status ia determined stuinlly(S) or
dyn.minlly(D) (nave bur aditretion m d i n d d a k qdr if tAe data
in drcquenUy w d t c n)
Shard -oh &om: if the .torn will probably be written

8. Prooavor atomic d - m o d i P y - m i t . inotructioax mklk.
condicring aceam rcgucrtr (4: .bo .Ibr rfildrDt bluy wait (E)

7. Flushing on cubt+uche tranofer: flush block (F), or do
not lush block (NF); trader ckrO/dirty ststus with the bbck (S)
(F i8 den*ruhlc u d a r k. and mennry do not mpport 9, in vkd
a r c it d d d w (oa the tmnofu: NF rr(rira t rmrfu of
dan/dirtp detu i/ M o d nul k dun 01 dirty - 888 ram atela

8. Number of lour01 for r u d - p m block: rlbr multiple
r.r=o. thus a mum for d p m block mwt .Imp a s
Lrale before providing tbe block (ARB); &w lor. of (&de) n a r a ,
forcing the bbck to be fddd Irm, mmwy (MEM): h8W lur
fetcher becorm source. dowing LRU repl.rcmmt acrom u c h a

0. Writing without fetch OD rrih min (no Yo& fetch whm
ram*# p a r r r l d c 01 inici.lizin# a t i r e Yo&)

10. Pu*g dirty d p - block: No flush 1 bbck in
otha cache (raw Y d d e) ; h h t under O p t h F, Faturn I

Of W o r d - w i l ~ LO m ~ y)

h)

(LRU)

11. M.mory mod. (#yotun d p * n : di.bJity)

12. m e n : bumy wait (no unmccurfd rdriw m k.; p a r r
a n vork while v d h)

d

VD RWDS

ID ID

N

s3

SJ
S

d

RWDS

ID@

N

S

53
S

d

RWDS

DPR

N

N
SJ
S

s 3
S

S
S

d

RWLDS

NID '1

d d

D S D

S*

d d d E

F NF F NFS" NFS"

d

d
d

- 36 -

0.

1.

2.
3.

1.

5.

6.

7.
8.

9.

10.
11.
12.
13.

14.

The status concepts appropriate for update-by-block (writeback) are not the same as for update-by-
word (writethrough), although there is some correlation.
0 Update-by-block (writeback)

0 Block status indicates procwsor occws-privilege to the block
a Read privilege - shared-access privilege
0 Write privilege = sole-access privilege

0 Block status indicates the block's residencg o m a g the ccrchu
D Shared residency, among several caches
0 Sok residency, in one cache

0 Updak-by-word (writethrough)

Under updak-by-block, write privilege implies u d e rwideney, but read priuilcge docs not imply
s h a r d residenq. Converseiy, uhared reaidenq i m p k read priftilege, but sole reaideneg docs not
imply write privilege. Jut the same, as shown in Feature 5, sok residency detected on a block fetch
can be 03td to assume write privilege.
On the other hand, under updateby-word. a processor can write any vaIid block. Bot if main
memory docs not need to be updated, as in the Firefly and Dragon protocols (Section B.2.2), then 8
write to an anshared block need not go through to the bus.
A convenient approach to this terminobgy may be to use rharcd and ude for both rrik-brck .ad
writc-through achema, in spik of the fact that they would have ditlcnnt meanings order the two
schemes. On the other hand, this approach may generate more confusion than convenience.
Referred to by Censier and Feautrier (1978), who give no reference to the literature in thb regard.
This is any read-shared copy of a block other than the source copy.
Source function for a clean block b useful only if fetehing from another cache b rigaiicrotly furcr
than fekhig from memory.
The dirtf nsd state io useful only if a block is not flushed when transferred, Le., Option NF of
Feature 7.
The dirty wrik state o k r s the most impelling reason lor the source function: the c u m n t cache has
written the data, so under update-by-block, memory docs not have the the latest version.

A source cache provides data onIy for a write repaat, not a read request. I have Jso heard that
Synapse may not aetudly implement cachc-to-cache transfer hen even though the profocol described
in the article makes it porribk.
The lock stace eliminates the time cost in busy-wait locking and unkking.
The lock-waiter state indicates another cache k probably wait*, so the o n k k should be broadcast
on the bas.
No speeibertioa b actually given as LO whether the directories are identical or not. ID b inferred
because they cite Goodman and do not state that the two directories are d i k e n t .
The cache data-store b Jso dual-ported d.
NID will be impkmented if the performance gab appears worth the cost.

I point out the porrribfity.
The need to transfer clean/dirty ststus can be eiiminated by changing the clean writestate to a Don-
source state. This rbo eliminatea an ineoasiskncy in the protocol, as discussed in the tact.
Option F shooid be impkmented in a system when it docs not sbw down 8 transfer significantly.
Option NF,S is depicted in order to explicak the option having the more compkx protocol.

- 37 -
r

States. From the table we see that Goodman was the first to implement the source
function, with the dirty write state in which case the cache, not memory, has the latest
version of the block. This was subsequently extended by Papamarcos and Patel to
include the clean (read and write) states, which are useful if fetching from another cache
is sufficiently faster than fetching from memory. Katz et al. introduce the dirty read
state: which is useful if a dirty block cannot be flushed to memory at high speed while it
is transferred to another cache. The current proposal, finally, introduces the lock states.

Goodmun. Under this protocol, a cache becomes the source of a block only when it has
the latest version (dirty status), which occurs in this protocol only when a cache has
written the block twice. Specifically, when a dirty block is transferred from one cache to
another, it is also flushed to memory, so it arrives clean. In addition, the first write to
the block goes through to memory and invalidates the block in all other caches - since
the original Multibus does not allow an invalidation signal - so the block still remains
clean. The block becomes dirty only on the second write, at which time the cache
becomes the source of the block. The costs of the invalidation write-through and the
flush to memory will be considered in the discussions of Features 4 and 7, respectively.

Frunk. The Synapse computer has its own proprietary bus, which enables invalidation
concurrent with block fetch (Feature 4) . Consequently, the clean wn'te state is not use-
ful here, as it is under Goodman's protocol.

Pupamarcos, Patel. This scheme introduces the clean um'te-state, which is useful for
fetching unshured data on a reud miss, since no other process will be using the data
(Feature 5) . If it subsequently turns out that the block is not written, it will not need to
be flushed to memory when purged. In addition, although

Papamarcos and Patel do not consider this option, if the block is not written, the cache
will not need to provide the block, which is advantageous if fetching from another cache
is not significantly faster than fetching from memory.

Papamarcos and Patel do not consider this option, for under their scheme, if a cache has
a block, it also has source responsibility for the block. This extends the ~ o u r c e function
from dirty to clean states, which is useful only i f fetching from mother cache is
significantly faster than fetching from memory, as stated in Section B.2.1.

More specifically, a cache will be designed with two interface registers, one for the bus
and one for the processor, and can also be given dual-ported read capability, as in Bor-
riello et al. (1985). Each register holds the contents of a block, so a fetch from the bus to
a cache will delay the cache's processor for at most one cache read-cycle - time to read
the block into the bus register. Furthermore, according to Smith(1982), cache access
time is five to ten times shorter than memory access time, although this ma!: not hold for
lower cost, microprocessor systems. Consequently, if a requester must hold onto the bus
while waiting for a memory read, the clean sourcestate will reduce the bus usetime by a
factor of about five to ten, while delaying the processor of the source cache at most one

read cycle. In addition, if the requester cache is not prefetching, the p r o c k r wait-time
will be rcduced by the same factor of five to ten.

Kat:, Eggers, Wood, Perkins, Sheldon. This scheme introduces the dirty read (source)
state. The write-dirty-source state is converted to renddirty-source in a cache when
another cache requests read privilege for the block. The reason that the block remains
dirty is because it is not flushed when is transferred, as it is in the Goodman and the
Papamarcos and Pate1 protocols. The reaSOn for not flushing the block is that if the bus
or memory does not support the concurrent flush at all, or at the speed of the caches, the
flush will slow down the cache-to-cache transfer or require an extra transfer to memory.
(The flush is discussed further in conjunction with Feature 7.)

Regarding the transfer of ~ource (and dirty) status, the requester cache assumes the plain
read state, since the source status is not transferred at this point. Instead it is
transferred only when another cache requests write privilege, in which case it obtains
write-dirty-source status - or write-clean-source status, if the block is clean. The new
protocol, in contrast, transfers source status here. The reason for transferring source
status is that it will implement a least-recently-used replacement algwithm actoo.
caches - if the last cache to fetch a block tends to be the last to purge it. In this case,
the chance of losing a source for read-shared blocks is reduced (Feature 8).

I feel that it is instructive to point out what appears to be an inconsistency in the Katt
et al. protocol that is due to the ownership terminology - which they borrow from
Frank. They extend Frank's protocol, along with the ownership terminology, but the
terminology seems to obscure the three independent status categories
(invalid/read/write, clean/dirty, non-source/source). SpecScally, the terminology
requires that if a cache IMS m i t e privilege for a block, it also have soufcc responsibility.
Consequently, in order to get a clean writestate for fetching unshared data at read
misses, they are forced to make the state a source state. What they really desire b a
non-source clean write-state, as in Goodman's protocol. And with the proper terminol-
ogy, they can achieve this end. Unfortadately the source status on the clean writestate
generates a side effect that has some cost: clean/dirty status must now be transferred
(along with the data) in a cache-to-cache transfer, since t source may now have either a
clean or a dirty block. This issue is further discussed with Feature 7.

Current R O ~ O S U ~ . This scheme is the result of identifying and carefully analyzing the
features of the other protocols, as well as introducing several new states and features.
The table-notes, along with this discussion, are intended to clnrijy the reaaona /or each
state and jeature 30 that a designer can select those that look most promising for their
system, and can then follow through with a detailed performance and cost evaluation of
those features in the context of their system.

In view of this, the current proposal has both clean and dirty source states, each useful
for the reasons already discussed. In addition, the current proposal introduces the lock
(dirty, source) state. This state carries the concept of state information beyond.

- 39 -

read/write privilege to that of lock privilege, and distributes its locaiion and control
among the caches, continuing the evolutionary trend of full-broadcast cache protocols
(Feature 5) . This allows the time cost of locking and unlocking to be eliminated, since
locking occurs concurrently with a read, and unlocking can occur concurrently with a
write. Finally, the lock-waiter state is proposed, which informs the cache when it must
broadcast the unlocking of a block on the bus, namely, if another cache requested access
to the block when it was locked.

Features. Keep in mind that a feature may speed up a particular operation, but overall
system speedup can only be determined from estimating the frequency of the operation
in the system. If the frequency is too small, then the feature will not pay off.

Feature 1. These features were discussed above. Note that the serialization of processor
atomic read-modify-write instructions, which moves beyond single reads and writes, is
Feature 6.

Feature 2: Fully-Distributed State In formation. The advantage of fully distributing
the state information is that it enables a cache to respond quickly to requests, it is conso-
lidated in just a few bits per block frame (pogp#statesl), and it simplifies the structure
of memory. Frank, however, does not fully distribute the source status, maintaining a
source bit in main memory, which indicates whether memory is the source or not. But
following Goodman's innovation, in a system with fully-distributed source status, if a
cache is the source, it informs memory not to provide the data when the cache services a
bus request. The current proposal, in addition, distributes lock status, as well as invalid,
read, write, dirty, and source status.

Feature 3: Directory Duality. Goodman and Frank reestablished the classic approach
of identical dual directories, and Katz et al. introduced a single, dual-ported-read direc-
tory, which reduces the directory hardware (Borriello et al. 1985).

However, under both schemes, interference between the bus and processor accesses to the
cache will be generated whenever the processor writes to the cache, for the status of the
written block must be updated to dirty at this time. -Bus requests will be bombarding
every cache continually, so the bus directory (or single directory) will be very busy due
to bus requests. Furthermore, according to Smith (1985), the frequency of writes may
vary from 5% to 35% of a processor's memory references. Consequently, one may want
to reduce, or eliminate, this interference.

Two methods of reducing this interference are to update the dirty status only when it
changes; or else in a lower performance design (Borriello et al.), have the read and write
cycles alternate. Another option is to eliminote the interference entirely by hwing
non-idenlicol directories. In this case, only the processor directory maintains
clean/dirty status. This information is accessed by the cache's bus-controller only when
the cache data is accessed, in which case interference with the processor must occur any-
way.

- 40 -

Accordingly we ask, How much smaller is the frequency of changing a block dirty-status
than the total write frequency? Appendix 3, Section 4, derives a formula for this fre-
quency - the frequency of changing a block dirty status to 'dirty', or equivalently, the
frequency of a write hit to a clean block. Estimates of -2% to .75% are derived; so if
this range is representative, the interference from updating dirty status to 'dirty' when it
changes appears to be negligible, not warranting non-identical directories on that ground
alone.

Under the current proposal, we might point out, non-identical directories eliminate not
only the interference of updating dirty status by the processor (which appears negligible
at this point), but also eliminate the interference of updating lock-waiter status by the
cache's bus-controller, as discussed in Section B.2.2.

Feature 4: Bus Inuulidatc Signal. Under Goodman's protocol, a cache obtains write
privilege to a block (invalidating the block in other caches) on the processor's first write
to the block by writing through to memory. As mentioned earlier, this is because the
original Multibus, for which Goodman was designing, does not give the designer enough
flexibility to explicitly signal invalidation (Section B.2.1). Later protocols make the
assumption, in contrast, that the bus does allow ezpiicit inmiidation. On a tun'te rniuu
the invalidate signal allows invalidating whiie reading the block. while on a mn'tc hit to
a block for which the cache has only read privilege, the same signal allows a puendo-
w i f e (or pseudo-read) that invalidates the block in other caches (and in Frank's proto-
col, clears the source bit in memory), but does not initiate a memory cycle; thus it can
be limited to one bus cycle even if a memory cycle takes longer.

Just the same, if a cache gains m ' t e privilege only at a processor unite (Feature 5 is not
implemented), then the cost of the write-through in terms of bus traffic is small if the
cache blocks are reasonably large, say n bus words. This is because the extra bus traffic
appears to be much less than l/n under typical access patterns, as shown in Appendix 3.
In addition, the initial write-through is an odmntage if it happens to be the only write to
the block and the block is purged before being fetched to another cache. This is because
the block is still clean after the write of the first word, so will not require a flush of the
entire block when purged. Also, if the block is fe tch4 to another cache before being
purged, there is no advantage to the write-through in a scheme in which cache-to-cache
transfer of a dirty block is as fast as cache-*cache transfer of a clean block.

Regarding the extra bus trafEc generated by the invalidation write-through, an upper
bound on this cost can be derived from an impossibly bad case. Specifically, there are
two occasions for block invalidation at a processor write: a hit on a block for which the
cache only has read privilege, and a miss. In the first case, any protocol requires that
the cache access the bus to obtain write privilege, whereas in the second m e , only
Goodman's protocol requires an extra bus access to obtain write privilege. Consequently,
the relative cost of the invalidation write-through, as compared to invalidation without
the writethrough, is greatest on write misses. So an impossibly bad case for the invali-
dation write-through scheme is that every miss i s a w i t e miss, thereby requiring an

- 41 -

invalidation write-through a t the time of every block fetch. If, further, the invalidation
write is instead assumed to be a read (which may actually take longer than a write), the
invalidation simply increases the block size by one word. The resulting bus-traffic com-
parison ratio is (n + l) / n , so an upper bound on the fractional increase due to the invali-
dation write is l / n . For example, if n is 8, the upper bound is 12.5%

Feafure 5: Fetching Da!a for Write Pn’vilege on Read Miss. The last three protocols
allow a block to be fetched for write privilege at a read miss in order to fetch unshared
data. This does not reduce concurrent access to the data since the data is unshared; and
if the data is subsequently written by the processor, the bus will not need to be accessed
at that time in order to gain write privilege.

Papamarcos and Pate1 introduced the fetching of unshared data for write privilege by
using a dynamic determination of whether the data is being shared or not, namely,
whether some cache currently has a valid copy of it or not. This simply requires an open
collector hit line on the bus. If a cache is purged at a process switch, this scheme will
guarantee fetching all unshared data for write privilege at read misses. But if a cache is
not purged at a process switch, when a process is later run on another processor, it is
possible that some of its writable data will still be in the first cache. However, it intui-
tively seems that this chance would be fairly small since quite a few processes would
probably have been run in the meantime and have wiped out most, if not all, of the data
of the earlier process. In fact, if this is not true, then one might argue that the caches
are larger than needed for the granularity of the processes.

Katz et al., on the other hand, suggest a static determination of unshared status, which
is somewhat more complicated. First, the processor must have a special instruction to
read data for writeprivilege, which will apply only if the access is a miss. Second, the
user must be able to inform the compiler, through type declaration, which data objects
may be read-shared among proces~e8, so that all other data objects will be fetched for
write privilege on read misses. Data objects that may be read shared among processes
consist of three kinds: read-only objects, hard atoms (if they are ever concurrently read
by several processes), and soft atoms that are reader/writer synchronized by the software
(to allow multiple readers). If these three kinds of objects are distinguished as such, then
all other data objects should be fetched for write privileg; on read misses. This would be
the optimal static-determination approach for fetching unshared data.

However, since the dynamic approach to fetching unshared data appears intuitively ade-
quate and much simpler, static determination can, instead, be used to fetch shared data
for write privilege on read misses, namely for soft atoms that are written during any
access session. For example, an access to a producer/consumer buffer will nearly always
w i t e the buffer descriptor (unless the buffer is full/empty on an insert/delete). Yet the
first access to the descriptor will read it. The compiler could be given the intelligence to
figure this out, and cause the data to be fetched for write privilege on a read miyS.

Finally, as with Feature 4, an upper bound can be derived for the extra bus trafic

- 42 -

generated by a protocol that does not fetch unshared, writable data for write privilege at
a read &. We first assume that all data is unshared, implying that invalidation will
generate no extra bus traffic under a protocol supporting both Features 4 and 5. We
further assume that all misses are read misses and that every block is eventually written,
thereby forcing another protocol to eventually invalidate every block at the time of the
first write to the block. For another protocol, every block fetch will eventually be fol-
lowed by an invaiidate operation.

In this context, let nad, nj,:d, ninml, n,md, and nla: be the number of bus cycles
required for bus arbitration, block fetch, block invalidation, word read, and fetch latency
(for internally-interleaved memory), respectively, and let npWr.4. be the number of words
in a block. Then the cost-comparison ratio is (nIdc,, + + ni,,wi) / "Ict&, making
the fractional increase (nod + ni,,d) / nld&. If every word-read requires an arbitra-
tion (a very-low-performance bus model), then njd& = (nu,) + nrwd) n d 8 , while if
the bus can be held for a multiword transfer (the usual bus model), then
"fetch = nor) + ntcadn-d8 for non-interleaved or externally-interleaved memory, and
nIctrh = n,,b + qat + n,,,dnwmd, for internally-interleaved memory. (For a block read,
an externally-interleaved memory requires the processor to issue an address sequentially
to each module in turn, while an internally-interleaved memory distributes the initial
address to the modules in parallel.) Since ninvalsntead, we can assume equality aad get
an upper bound.

These assumptions imply that an upper bound for the very-low-performance model is
1/nWmdr, the same as the eariier upper bound. Under the usual bus and memory models,
if bus arbitration is overlapped with the prior transfer, as on the Multibus, then n,d is
zero, again making l/n,& an upper bound. More generally, if ni,,d = n-d/C, then
the upper bound decreases to l/cn-&. For example, for externally interleaved
memory, c = 2, so if n = 8, the upper bounds are 12.5% and &as%, respectively. The
efIect of c is identical in the upper bound for Feature 4 if the formula there is expanded
and if arbitration is again overlapped. Also, for internally-interleaved memory,
ntLhtc - -
Appendix 3, Section 4, finally, derives much smaller, approximate upper bounds.13

Feature 6: Rocessot Atomic Reud-Modi fy-iYn'te Instruction. There are several ways
to implement processor atomic read-modify-write instructions on (hard) atoms so that
conflicting access requests are serialized. Let us consider four methods, the first of which
requires going through to memory, while the others do not.

= 1, so with overlapped arbitration, l/n-d8 is again an upper bound.

>

The first method modifies the update-by-block (write-back) policy, requiring a read-
modify-write instruction to uccess und hold u muin memory unit u8 usuuf (using explicit

~ -
l1 For Katt et d. ts- is 8, making 12.5% sa upper bound, yet the v d u a they report are much

greater, nameIy 1-6 to 32%. Thb b because they counted say bas access, whether for bbck in*rlid+-
tion, fetch, or flush, aa generating the s s n e amount of t d c (S. Eggen, personal comm. 1985).

- 43 -

or implicit locking), even if there is a valid copy of the block in the cache (Rudolph and
Segall 1984). This requires that the processor inform the cache of the start of a read-
modify-write instruction, it requires the cache to manage the bus appropriately and
cache the block, and it requires that the block be invalidated in all caches containing the
address - or updated in those caches in order to implement efficient busy wait.

Some processors do not signal the beginning of an atomic read-modify-write instruction,
such as the Motorola 68000 - which has only test-and-set (MCSBOOO 1982). However,
this signal could be achieved by the programmer by writing a special register in the
cache before and after the instruction execution; and the cache, or interface hardware to
the cache, must be designed to interpret the register accordingly - as applying to the
data references thereby encompassed. In fact, this is similar to the Intel 8086 implemen-
tation of an atomic read-modify-write, which is accomplished by a special bus-lock
instruction prefixed by the programmer to every instruction in an atomic sequence (Rec-
tor, Alexy 1980).

The second method, that of Frank and of Katz et al., requires that the atom be con-
tained entirely on one block, that the block be fetched for write privilege at the begin-
ning of the rend-modify-write instruction, and that the cache (or cache module) be held
throughout the operation (implicitly locked). This approach again requires that the pro-
cessor inform the cache at the start of the instruction, and it requires the cache to
respond as mentioned. Papamarcos and Pate1 propose a variant of this: if the cache
does not have write privilege for the block at the beginning of the operation, the bus i s
gotten and held through to the write, at which time write privilege for the block is
obtained as usual. I do not see any advantage in this special case, over that of fetching
the block for write privilege at the beginning of the operation, while the disadvantage is
that the bus is held longer than needed. In any case, the second method, a standard
update-bp-block (write-back) method, does not allow the most efficient busy wait, as dis-
cussed in Section B.2.2."

The third method for implementing a read-modify-write instruction again requires the
processor to inform the cache of the start of the instruction. In this case, however, the
cache does not fetch the block for m ' t e privilege until the um'te, nor does it hold the
cache or bus in the meantime. Specifically, if the write kenerates a miss, it means that
the block was stolen between the read and the write, so atomicity is violated, and the
cache raises an ezception that causes the processor to abort the instruction, and the
cache accordingly aborts the pending write request.15 Like the second method, this one
does not allow the most efficient busy wait.

The read-for-writc-privilege instruction of Katz et d. will not, in general, work for initiating an
atomic red-modify-write instruction. This is because it is deigned for fetching unshared data, so applies
only on misrea; w.hereas for an atomic read-modify-write instruction it must apply on hit8 Y well. This
can be remedied if the software never just reads a hard atom, but dwayr writea it (to hitifire) or red-
modify-writes it (to operate), in which case a hit implies write privilege. However, this consrnint d o a
rule out efficient busy wait, which requires fetching the lock bit for read privilege, to test it until it is
found to be zero.

Is Note that the cache cannot implement atomicity here by preventing the block from being stolen (01

- 44 -

Notice that if one did not want to build the intelligence into the cache itself for raising
the exception, it could be built into the processor intetfuce hardware, and the cache
could simply signal this hardware on eucry miss. It might also be noted that every pro-
cessor probably has some externally-generated exception that could be used here, such as
the non-maskable interrupt on the Intel 8086, and the bus error exception on the
Motorola 68OOO (Rector, Alexy 1980; MC68000 1982)

The fourth method for implementing atomic read-modify-write instructions is to use the
cache lock-state to realize explicit locking, as detailed in Section B.2.2. Efficient busy
wait is aL0 proposed there, using a lock-waiter state and a busy wait register.

Feufure 2 Rushing on Cache-to-Cachc Transfer. When transferring a block from one
cache to another, there are two advantages to flushing it.

If the block is dirty: reliability in the face of crashes is improved
0 If the block may be clean o r dirty: clean/dirty status need not be transferred
Keep in mind that a protocol supports cachebcache transfer only from a cache having
source status for the block (indicated at the top of the table).

In view of this, if a source can have either cleun or dirty stutus (Papamarcos and Patel,
Katz et al., and the current proposal), then the clean/dirty status must be transferred
aIong with the block, unless the block is flushed to memory while it is transferred - as it
is in the Papamarcos and Patel scheme. Papamarcos and Patel, just the same, flush only
dirty blocks, so ciean/dirty status must, in effect, be put on the bus in their protocol,
an!way. If memory can keep up with the flushes, as considered next, and if available
bus codes are scarce, it may be useful to flush all blocks so that two diflerent codes are
not needed for cache-bcache transfer.

However, the flush will slow down the transfer if the bus and memory do not support the
concurrent flush at all, or at the speed of the caches. The cache speed can be uffained
ezactfy by an interleaved memory in which transfers always start at the beginning of a
block. The speed can be approached on average by an interleaved memory in which
transfers start at any module, or by any memory that is buffered adequately, though
interleaved memory will require less buffering. Therefore: due to its advantages, flushing
should be implemented if it can be done concurrently with the transfer at the speed of
the caches. The non-flush option (NF,S) is depicted for the current proposal in order to
explicate the option having the more complex protocol.

Frank does not have a source read-state; instead memory is the source for any read-
shared block. So if a cache requests read-privilege of a block for which another cache
has write privilege, the request cannot be serviced by cache-to-cache transfer. Rather

the cache from k i g .ceased from the bas) throughout the operation. Thb is bceaaae it would c m t c
deadlock between two processon rimuItaacourly dmodify-writ ing the same variable, or needing Lo ae-
cess elch other's caches during a red-modify-write of dillerent vuirblcs.

- 46 -

the block must first be flushed to memory, returning source status to memory, and then
fetched from memory. In extending Frank's protocol, Katz et al. added the source read-
state in order to allow cache-to-cache transfer on this occasion.

Feature 8: Number of Sources for Read-Rideye Block. Under Papamarcos and Patel,
if a block is in any cache, it is fetched from a cache, rather than from memory. How-
ever, there is a disadvantage here. For if the block has read status, several caches may
have the block, so any such cache must arbitrate in order to select the actual source.
This is done so that only one cache may interfere with its processor, and if necessary, for
electrical reasons, to limit the number of devices driving the bus. However, this method
of selecting a source does slow down the cache-to-cache transfer - increasing the bus
traffic, as well as the processor wait.

Under the current proposal and that of Katz et al., on the other hand, arbitration of
potential sources is never required. However, if a block has read status in several caches
and the source purges the block (flushing it to memory if dirty), there will be no source
cache for the block. So the next fetch of the block must be serviced by memory, which
may be slower than fetching from another cache even if arbitration is required.

If a fetch from memoty i s significantly slower than cache-to-cache tranttfer with arbi-
tration, then the expected cost of each of the two disadvantages, that of arbitration and
that of fetching from memory, should be determined in order to decide which is expected
to be worse. Let us illustrate with an intuitive evaluation of the frequencies (not the
expected costs) of the two disadvantages as they relate to instructions - probably the
primary source of read sharing. All cachetecache transfers of instruction blocks will be
slowed down under Papamarcos and Patel. Whereas cacheto-cache transfer of instruc-
tion blocks will be slowed down under the current proposal only on the nezt fetch after
the source of a block purges the block (while the block still has a valid copy in another
cache). However, under the current proposal, the cache that most recently fetches a
block becomes its source. This implements a least-recently-used replacement algorithm
across caches if the cache that most recently fetches an instruction block will tend be
the last to purge it. In this case, the disadvantage of the current proposal will be less
frequent than that of Papamarcos and Patel.

Finally, notice that if the fetch from memory is significantly slower than cacheto-cache
transfer with arbitration, then the fastest option for the current proposal is to resort to
urbitrution when there is no source. This will work in a system that does not support
flushing dirty blocks on a cacheto-cache transfer (Feature I, Option NF,S) Specifically,
when a source cache is present at a block fetch request, it signals its presence on the bus
by placing the clean/dirty/lock status of the block on the bus. Therefore, at a request
for a block which has read privilege in some cache, every such cache will arbitrate only if
it detects that there is no source cache. Just the same, if this situation is sufficiently
infrequent, then the complexity of implementing the feature can be avoided, resorting,
instead, to a fetch from memory.

.)

Feature 9: Wn'ting without Fetch on Wn'te Miss. Under um'te-without-Jelch, if the
processor is going to write an entire block, the block need not be fetched on a miss,
though the bus must be accessed in order to invalidate the block in other caches, as on a
normal write. In order to implement it, the compiler must know when a processor
block-write instruction will write an entire memory block. This may occur in initializing
data and in saving process state at a process switch. In addition, the processor must
have a way to inform the cache that the block-write will write an entire memory block.

Feature 10: Purging Dirty Read-Rivilege Block. If blocks are not flushed in cache-to-
cache transfer (Feature 7, Option F), a read privilege block can be dirty. When a source
purges such a block, it must access the bus and flush the block to memory. But it is pos-
sible to arrange for another such cache to take source status and tell the purger to abort
the flush, thereby reducing bus traffic. Just the same, this feature has a complication:
the potential takers must arbitrate, or else several sources may result (giving rise to the
arbitration of Feature 8). The time required for arbitration may ofket any reduction in
transfer time. However, if the bus can electrically support multiple driven, then this
one, probably infrequent, occasion is acceptable for avoiding arbitration and for allowing
the resulting interference with the relevant caches. Yet if the frequency is low enough,
the implementation expense will not be justified anyway. In short, the value of this
option is highly questionable.

Feature 11: Memory Mode. The current proposal includes a memory-mode bus com-
mand. A memoty-mode request is one that is ignored by all caches, and is implemented
for reasons that include these: to allow system analysis - test, debug, measure; and to
increase reliability - avoid reading an accidentally cached value for an address that
should not be cached, such as the address of a memory-mapped register or port.

Feature 12.- Eficcient Busy Wuit. The current proposal also implements highly-efficient
busy wait, using a busy-wait register that waits for the unlock action to be broadcast,
and which then interrupts its processor. This eliminates all unsuccessful retries from the
bus, and allows a processor to wort while waiting (Section B.9.2).

Innovation Summary. The evolution shown in Table 2 can be summarized by listing
the innovations of each scheme, as shown in Table 3. RQdolph and Segall (19@), along
with the Firefly and Dragon, are added from Section B.2.2.

Feature Evaluation. The extent to which any feature improves performance needs to
be evaluated for the particular system of interest. This is accomplished by formulating a
stochastic model of the access patterns of the processors for benchmarks, and then by
evaluating the features through analysis and simulation, using the model. This will allow
the frequency of each relevant event to be determined, and from this, the speed-up that
each feature'may offer in the system of interest. Papamarcos and Patd, and Archibald
and Baer (1985), provide examples of this work.

- 47 -

Tab le 3. Innovation Summary

Clmric (pre-1978)
0 Identical dual directories
Goodman (1983)
o
0 Dual control units
o
o Fully-distributed read/write/dirty/source status
[3 Flush on cache-to-cache transfer
F r a n k (1984)
0 Bus invalidate signal

Papamarcor, P a t e l (1984)
Cache-to-cache transfer (source state) for clean blocb

0 Serialization of atomic read-modi/y-wites, but not allowing efficient busy wait
E Fetch unshared data for write privilege - dynamic determination of unshared status
0 blultiple sources for read-shared block; a read-privilege source arbitrates before provid-

ing a block
Rudolph, Segall (1984) (Section B.2.2)
0 El/icicnt busy wait: h t write goes through to other caches
F i r c ly , Dragon (Section B.2.2)
0 Updatc-by-block (writeduck): for unshared data
o Updatc-by-word (write-through): for shared data; allows efficient buy wait
Katz, Eggcn, Wood, Perkinr , Sheldon (1985)
0 Dirty read state
0 Dual-ported-read directory and data-store
0 Fetch umhared data for write privilege - static deterpination of unshared status
0 Single sourre for read-shared (dirty) block - fetch from memory if source purges block
Cur ren t p r o p o d (major features)
0 Systematic terminology and conceptual development
0 Efficient locking and busy-waiting - lock states, busy-wait register
0 Consideration of interdirectory interference
0 Single source for read-shared block, but last fetcher becoma source, allowing

placement across caches
0 Write without fetch on write miss

Cache-to-cache transfer (source state) for dirty blocks

Serialization of conflicting single reads and writes (not atomic read-modify-writes)

No flush on cache-*cache transfer

re-

- 48 -
-

C. Sleepwait and Service-Request Queuing
Paradigm for High-Contention Atomic Operations

C.1. Sleepwait and ServicoRquut Queuing 5 1

C.l.l. Usefulness of Hardware Sleep/Priority Queuu 51
C.1.2. Structure, Management, Function of Hardware Queues 54
C.L.3. Related Issues 59

C.2. Paradigm for High-Contention Atomic Operations 62

C.1. Sleep-Wait and Service-Request Queuing

C.1.1. U~efulntss of Hardware Sleep/Priority Queues 51
C.1.2. Structure, Management, Function of Hardware Queua 54
C.1.3. Related Issues 59

-AS for busy wait, in making sleep wait more efficient, it is of special interest to make it
faster. With this bias in mind, we will see how enqueuing and dequeuing on a sleepwait
queue, or other priority queue, can be made very fast. Then we will look more
specifically at the use of priority queues as servicerequest queues. And finally we wiil
generalize the hardware-queue technique as a paradigm for implementing high-
contention atomic operations in VLSL

C.1.1. Usefulness of Hardware Sleep/Aiority Queues

Sleep/Priority Queues - Usefulness. The priority queue is a pervasive construct in
an efficient multiprocessor system, for it is used to implement sleep wait, as well as to
manage service requests. High priority processes and requests should be given attention
first, so that the system will meet the performance demands of the users and algorithms,
as well as manage the limited hardware resources efficiently.

Sleep wait can be elegantly implemented using P and V operations on semaphores, that
is, queues with their accompanying counts. P and V will respectively decrement and
increment the count, and may also enqueue or dequeue a process. Priority queues
without counts are also a central tool in a multiprocessor system, allowing one process or
processor to send service requests to another. For example, a program-interpretation
(general-purpose) processor will send service requests to 1/0 processors, floating point
processors, and other processors by enqueuing the requests on the appropriate queues.

The two pervasive uses of priority queues, then, are these:
P f l count decrement/increment is interlocked with ;nqueuing/dequeuing
Setvice requests: service requests are sent from one process to another, typically
from one processor to another

As we will see, the same hardware that is used for sleepwait queues can be used for
servicerequest queues, so two different kinds of queue need not be designed. Figures 21,
22 illustrate the P/v operations, which will be explained in detail below.

Also note that the sleepwait operations that we will consider here are standard P and v,
which do not implement multiple readers. Yet if multiple-reader sleepwait were con-
sidered important, it could be implemented in hardwaxe, extending the p a r a d i p
presented here for P and V. Or else the synchronization descriptor could be h p l e
mented in software, and the actual wait queues implemented using the hardware priority

queues. In this case, access to the synchronization descriptor should be achieved using
busy wait; this is because contention for the synchronization descriptor should not be
high. since the queue operations will be so fast. Finally, if it is desirable to implement
optionalwail P operations in the hardware, this is possible as well.

Hardware us. Software Queues - Performance. If priority queues are imple
mented in software, they will incur non-trivial performance cost in terms of processor
time, as well as switch time, to fetch the needed data, and to write the data to memory
if it cannot be left in a cache. If, in addition, the sleep-wait operations (P/V) are not
implemented in hardware, access to any software queue will be possible only by busy
waiting on the lock for the queue. With hardware implementation of sleep/priority
queues, on the other hand, busy wait can be eliminated and the switch time reduced to
a trivial amount. The amount of reduction in switch traffic, and the corresponding
increase in performance, must be determined through stochastic modeling, informed by
simulation, in order to be sure that the cost of the hardware is warranted by the perfor-
mance gain in the system of interest.

Elimination of Busy Wait . Actually, the only way to reduce the probability of busy
wait to zero, for a particular wait condition, is to allow the hardware sleep-wait queue to
grow as long as the maximum number of processes that could ever wait on the condition.
However, with queues for which this worst-case value is much larger than the average
value, this would entail undesirable hardware cost due to a long, fixed-size queue, whose
cells would be underutilized; or else it would entail a complex and slow algorithm to link
the entries, or to extend the queue in some way when necessary.

The method developed here, instead, uses fast, fixed-size queues of reasonable size -
determined by analysis and simulation - to reduce the probability of busy wait to an
acceptably low value. If a queue fills up and a request is then made to place something
on the queue, this rare occurrence is handled by the requester busy-waiting until the
queue again has space available. While waiting, the requester can record the occurrence
of the event in a table for future use in adjusting the size of the queue. Therefore, elimi-
nation of busy wait is a convenient way of saying that the probability is reduced to an
acceptably low level, so that busy wait is rarely, if ever.,seen.

Parallel Switch. It is interesting to notice that, while the most efficient implementation
of busy wait requires a broadcast system - to d o w the broadcast of current status
information - the most efficient implementation of sleep wait allows a parallel switch
without broadcast, since the information and operations are centralized, in a memory
processor unit (MPU). The MPU performs the enqueuing and dequeuing operations on
the queues (Figures 21,22). It is especially advantageous to have memory perform high-
contention atomic operations, in contrast to other operations, since the requisite data
cannot be kept in a processor cache for an extended period of time due to the contention
for the d a t a The data must be fetched from memory or another cache a n p a y . The
performance advantages will become evident in the ensuing discussion, and are summar-
ized in Section (2.2. In short, an attractive sideeffect of having memory perform the

atomic operations is that this implementation is possible in a parallel switch.

C7tracomputer Approach. The designers of the Ultracomputer have recognized the need
for fast queue operations (Gottlieb et ai. 1983; Edler et al. 1985). However, their imple-
mentation is mostly in software, the only hardware atomic operation being add.

.4tomic add is used to assign, to a requesting process, a queue cell for the process to
insert into or deIete from. However, the assigning of cells is not interlocked with the
enqueuing/dequeuing operations on the cetls themselves. The result of the lack of inter-
lock is one complication after another, until the final scheme is incredibly complex.
Complicated techniques are required for insuring that inserts and deletes on each cell are
serialized properly, as well as for preventing overflow and underflow of the queue. For
all of this effort, the result is nothing more than strict FIFO queues, requiring priority
queues to be implemented by multiple FIFO queues, each covering a single priority
value.

Furthermore, busy wait is not eliminated; P and V must still be implemented using busy
wait. And busy wait itself is implemented ineficiently using atomic add instead of test-
and-set. In particular, a wccessful busy-wait try requires two switch accesses, one to
test the variable (to preclude livelock, where two opposing processes alternately incrc
ment and decrement the variable, neither gaining access), and one to atomically test-
and-decrement it; while an unsuccessful try requires a third switch access to nullify the
decrement by incrementing the variable. As they note, Dijkstra (1972) mentioned the
possibility of using atomic increment for busy wait, but decided against it due to the
livelock possibility, opting instead for a swap instruction, used to implement testand-set.
Gottlieb et al. argue that as the number of CPUs grows larger, the advantage of atomic
add, here, increases. But it seems to me that atomic add has only disadvantages here: it
generates twice as many switch accesses as test-and-set for a successful try, and three
times as many switch accesses as test-and-set for an unsuccessful try.

These inefficient Cltracomputer algorithms appear to result from an attempt to use the
atomic add operation to the fullest. Add is commutative and associative, so can be
implemented by the Ultracomputer switch, as shown in Figure 23. Although the switch
implementation of commutativesssociative atomic operations is a truly creative contri-
bution to computer architecture made by the Ultracomputer designers, you can go only
so far with just an atomic add! For busy wait, atomic add is inefficient. And for
efficient management of high-contention queues, especially sleep and priority queues,
atomic add is of little help. Hardware enqueuing and dequeuing must be used, and since
\IS1 chipdesign tools are now readily available, the time for hardware queues has
arrived.

- 53 -

C.l.2. Structure, Management, Function of Hardware Queues

Data Structures. There are two data structures that are used to implement sleep-wait
queues

Hardware structure: semaphore - containing queue and count
Software structure: process control block - containing state of enqueued process

lye will now look at each in turn.

Semaphore. A semaphore is an atom that contains a count and a process queue, and is
used to manage access by processes to a resource pool using sleep wait. The term sema-
phore is also used to refer to the count itself, with the ambiguity resolved by contest. If
the maximum size of the pool is n, then the current size varies between 0 and n as the
items are allocated and deallocated. The count is initialized to the initial number of
resource items available, usually n, and is subsequently operated on by increment and
decrement. The resulting count indicates the following, where size refers to current size
of the pool or queue.

Count 2 0 indicates

u Pool size - number of resource items available
c Queue empty - no processes u*aiting

Count 5 0 indicates

G Pool empty - no resource items available
c Queue size - number of processes waiting

A queue, in the present context, is a priority queue, providing deletion of the highest
priority process in the queue. The low-level details of the design have not yet been
deveIoped, but the following is clear.

Each queue will consist of a header and a body. The header contains the current count
and maximum possible count, while the body contains the queue cells, each of which has
an ID field, a priority field, and a valid bit. The queug has a fixed number of ceb, as
mentioned earlier, for speed. The appropriate queue sizes, as well as the frequencies of
each size, must be determined by analysis and simulation, but typical sizes may be 1, 2,
5, 10, 20, in decreasing frequency - there will be many small queues but only a few
large queues. A single chip may contain queues of different sizes, or queues only of the
same size. In the former case, all queues in a row on the chip should probably have the
same size, in order to make the design more regular (Figure 24). The highest priority
entry on a queue is determined in the way that bus arbitration is typically done -
resolving each bit in turn, from the most significant to the least, among the valid cells.
The queue could also be made aseociative - allowing deletion by process ID - if the
cost appears warranted by the frequency of use.

The count is never allowed to increment above its maximum value. Consequently, a

- 64 -

queue that is not normally thought of as having a count, such as a ready queue or, more
generally, a scnn'ce-request p c u e , has the maximum initialized to zero, allowing the
hardware to be the same for both kinds of queues.

The queue will also need logic for determining when it is full. One alternative is to use
the valid bits - detecting that there are no invalid cells. Another alternative, is to
maintain a hardwired sue that would be compared to the current number of valid cells
as indicated by a negative value of the current count.

In concIusion, the replication of a few different kinds of logic cells, in particular, count
cells and entry cells, and the simple control, make an MPU queue chip highly regular,
hence a good target for VLSI implementation.

Process Confrdl Block. A process control block (PCB) is the data structure that con-
tains the state of a process while the process is not running, and other necessary control
information, if any. It has a valid bit, which is set to invalid when the process is awak-
ened and its state is loaded into a processor, and is set to valid when its state is saved in
the block as it goes to sleep. For service-request queues, similarly, a senn'ce-tequcat con-
trol block would be used to pass the needed information between the requester and the
server.

Queue Management. In order to insure the integrity of sleep-wait and service-request
queues - whether they are implemented in software or hardware - the system software
provides the user with the procedures for manipulating the queues - the procedures for
initialization, enqueuing, and dequeuing. These procedures will collectively be called the
queue munagcr, and will include the responsibilities of an operating system (OS)
scheduler and dispatcher. In a high performance system, the overhead of invoking the
queue manager will be as small as possible, close to that for any user-designed procedure,
the only difference being invocation by trap instead of explicit control flow. Unlike a
monitor, the code will be reentrant, ailowing any number of processors fa execute it
simultaneously. More specifically, tables used to manage allocation of the queues will be
lockable, but the code for manipulating the queues will not be lockable, thereby allowing
greater concurrency. Consequently, at any one time there could be an instance of the
manager running on each processor. 1

Since the hardware queues are of fixed size, the queue manager will allocate, address,
and deallocate them as it would for fixed-size (statically-allocated) software queues. At
the time of an allocation request, if there are no hardware queues available of the
appropriate size, a software queue will be allocated instead. The information needed for
subsequent access to the queue will be kept in a small descriptor. It would probably not
be advantageous to make every queue a hardware queue even if that were possible. The
main advantage is in implementing the highsontention queues in hardware.

Finally, as will be explained in detail in the section on operations, the queue manager
does not directly manipulate a hardware queue. Instead, the MPU containing the queue

manipulates it. Or put diEerently, the MPU consists of all the queues; along with an
interface between the switch and each queue. Each queue contains highly parallel circui-
try that performs the enqueuing/dequeuing operations. The queue manager requests the
init/enqueue/dequeue operation of the appropriate MPU, identified by the queue
address, and in turn receives the information it needs on the current status of the queue.

To illustrate, in response to an enqueuing request, the manager is informed s to whether
the queue is already full or not. The CPU running the queue manager then gives up the
switch, having held it only for the time needed for the high-speed write/read - a write
followed immediately by a read from the queue, through different registers in the queue.
The addressed queue continues to carry on the requested operation, while at the same
time the CPU evaluates the information it received in order to determine what to do.
rjotice the concurrency between the CPU and the MPU, and among the parallel com-
ponents of the queue circuit, all achieved without holding onto the switch. Ideally the
queue circuitry will have a cycle time as f a s t ' s the switch cycle time. But if current
VLSI technology does not allow this, then successive requests to the same queue will
suffer some delay.

Queue Operations. There are three operations that can be executed on a priority
queue.

Initialize the queue
Enqueue an entry
Dequeue the highest priority entry

Let us consider each in turn. When the queue manager is referred to; now, the reference
is to the instance of the queue manager of interest.

Initialization. The queue manager initializes a sleepwait queue by requesting its initial-
ization, and by sending the initial and maximum values of the count along with the
request. All cells of the queue are thereby set to invalid, and the current and maximum
counts are set to the requested values.

Enqueuing - P. In requesting the P operation, the queue manager gives the request to
the MPU, along with the address of the queue and the'process's ID and priority (Figure
21). The MPU reads the count and returns the value to the manager, along with an
indicator of whether the queue is full or not. This constitutes a write to queue registers,
and a read from queue registers, and completes the switch transaction.

If the queue is not full, the MPL' concurrently decrements the count; and if the resulting
value is less than zero, enqueues the requesting process, placing the ID and priority on
the queue. The hardware actually enqueues the process while operating on the count
and evaluating it. If the queue was not full and the result is negative, then the valid bit
of the new entry's cell is set to valid.

In the meantime, the queue manager decrements the count it received, and if the result

- 66 -

is negative and the queue was not full, it saves the state of the process in the process's
PCB. It then takes a process from a ready queue and loads its state. The r e m n for the
valid bit on the PCB is that it is possible, though highly unlikely, for a process ID to be
moved from a wait queue to a ready queue and then to a CPU before the process state
has been written to the PCB. If a CPU wants to run a process whose PCB is invalid, it
busy waits on the valid bit. This should rarely, if ever, occur. On the other hand, if the
queue was full, which also should be a rare occurrence, the manager busy waits until the
queue is no longer full, as described earlier.

Dequeuing - t: The V operation is analogous to the P operation. In this case, the
queue manager gives the MPU just the request and the address of the queue (Figure 22).
The MPU reads the count and returns its value to the manager, as in the P operation,
but now it also returns the ID and priority of the highest priority process on the queue
(if any), effecting a read from queue registers.

In addition, the MPU concurrently increments the count, and if the initial value was
negative, dequeues the highest priority process by setting the cell's valid bit to invalid.
Note that when an MPU receives a V request, the highest priority procm in each of its
queues should already available, having been selected by the queue circuit during the
time since the last insertion or deletion on the queue. As mentioned, this selection
should be as fast as the switch cycle, if possible; otherwise successive requests to the
same queue will suffer some delay.

In the meantime, the manager evaluates the count it received, and if it is negative, puts
the process ID and priority that it received from the queue on a ready queue, after
adjusting the priority appropriately. The priority is an increasing function of the
amount of contention expected on the lock, but it may be as simple as giving any lock
holder the same high priority.

In addition, it is a software error for the number of V's on a semaphore to outbalance
the number of P's so as to (attempt to) push the count above its maximum. This error
can be returned to the queue manager in response to a V request, if desired. Since the
initial value of the count is kept in the queue header and the current value is never
allowed to exceed it, the same circuit that manages this'can return the above error sig-
nal. If the queue, on the other hand, is used as a service-request queue instead of a
sleepwait queue, the error line would be ignored by the queue manager when requesting
a dequeue operation.

Priority Pkeemption. Priority preemption of a running process may be desirable.
Specifically, if a running process has lower priority than the process just taken from a
sleepwait queue, it may be desirable to preempt the running process. With a non-
broadcast parallel switch, preemption is limited to the process invoking the V operation
on the wait queue. The queue manager should compare this priority to that of the pro-
cess taken from the sleep queue. If the priority of the running process is lower, the
manager should save the state of the running process, place the process on a ready

queue, and load the state of the process taken from the sleep queue.

Gnder a full broadcast system, on the other hand, broadcast can be used to achieve
priority preemption across all processors whenever a process is put on a ready queue.
Specifically, each CPU is given a pn'on'ty register containing the priority of its currently
running process, along with hardware that will compare this value to a broadcast prior-
ity, will arbitrate for the bus if the broadcast priority is higher, and will interrupt the
process running on the CPU if the arbitration is won. As mentioned in Section B.l.1,
this hardware may be integrated with a CPU cache.

At a V operation, when the queue manager receives a process priority and DD from an
h P G , it places the priority and ID on a ready queue, and in doing so, broadcasts the
priority to all CPUs. The broadcast priority is, accordingly, compared to the priorities
in all of the priority registers. So if a running process has a lower priority and has the
corresponding interrupt enabled, its priority-register interface arbitrates for the next bus
system, as in efficient busy wait. The arbitration scheme, as discussed in Section B.2.2,
uses the most significant bus-priority bit. The bus priority, in the present case, is deter-
mined by the setting of the most significant bit, along with the boolean complement of
the process priority (or a derivative of it). The complement is used because the lower
the process priority, the higher the bus priority should be, in this case. There must be a
way to resolve equal process priorities, say using a daisy chain! or having the lowest bits
of the bus priority be determined by the processor.

The winner then interrupts its CPU, and the queue manager there saves the state of the
running process, places the process on a ready queue, and loads a new process from the
ready queue that occurred in the corresponding broadcast. If the system has a single
bus, then there is probably just one global ready queue (Figure 25).

Service-Request Queues. As mentioned, priority queues have frequent use as request
queues for processes or processors. To illustrate, let us consider how they may be used
for an 1/0 service request motivated by an 1/0 request or a page fault, either of which
invokes the appropriate OS procedure/s.

The OS forms an 1/0 request by creating an I/O contiLoZ block, comparable to a process
control block, and enters the information that the 1/0 driver will need to service the
request. The OS also includes the process ID, priority, and (if appropriate) the processor
ready-queue address in the 1/0 control block. The OS then gives the 1/0 request an ID,
as well as a priority, and enters the ID and priority in the appropriate 1/0 request queue.

An 1/0 driver takes requests from the appropriate queue, mapping to the corresponding
control blocks in the same way as done for process control blocks, and services the
requests, leaving the resulting status information in the I/O control blocks. When done
with a request, the driver puts the process ID and priority on the appropriate ready
queue.

- 68 -

C.1.9. Related Issues

Let us now look a t several issues that have yet to be resolved. A few of these have
already been mentioned.

F-t Addresa Mapping. How should fast mapping from a process ID to the address of
the process control block be implemented? If processors have their own ready queues,
how should fast mapping from a processor ID to the address of the processor ready queue
be done? The best way may be to take the process ID as a lower part of the PCB virtual
address, and to take the processor ID from a lower part of the processor ready queue vir-
tual address. The upper part of the addresses will then be fixed - devoting a certain
area of the address space to PCBs, another to processor ready queues, and other areas to
other kinds of shared objects. Note also that if the caches are managed by virtual
address, rather than physical, the synonym problem can be resolved by devoting the
upper part of the address space to shared data, and this resolution is consistent with the
fast mapping scheme.

FIFO Queues. It may be desirable to have fast FIFO queues as well as priority queues.
These can be implemented with the priority queue hardware by allowing it to be initial-
ized to a FIFO mode, which will operate as follows.

The enqueuing operation will remain the same - the first empty cell is selected - but
the dequeuing operation will be changed so as to choose the oldest entry. It would be
possible to have the dequeuing operation cause all entries to move one cell toward the
head of the queue, as in a normal hardware FIFO. However, since the priority hardware
is in place, it will be less expensive to use a single priority bit, and have this m m from
cell to cell.

To be specific, suppose that the value one is of higher priority than zero, and that all
entries have the most significant priority bit zero, except for the oldest entry. Then the
normal dequeuing operation will select the oldest entry. In addition, the dequeuing
operation should cause this one to move to the next cell in the direction of the queue tail
(wrapping around to the other end of the queue when nqcessary), which will be the new
oldest cell. When an entry is loaded, it is given a most significant bit of zero, unless the
queue is empty (the semaphore count is non-negative), in which case it receives a most
significant bit of one.

Starvation. Should starvation of a process be prevented in the case that there is
always another process of the same priority on the queue? What is the probability of
starvation without its prevention?

In case it is decided that starvation should be prevented, the following scheme may be
the simplest. Let a fourth command to a queue be implemented:

fiumote: promote, or raise, the priorities of old entries to at least the value sent
with the command

- 59 -

In 4.2BSD Unix, the OS evaluates the priorities of processes in the ready queue every
second and raises the priorities of those that have been in the queue a relatively long
time (Peterson, Silberschatz 1986). So let US assume that every so often the queue
manager will execute the promote command on the queues of interest. Further, let us
assume that only the processes having priority less than u are of concern. Then the
queue manager will give the value u with the command, and the queue circuitry will
then modify the priorities of the old processes so that they become at least as great as u.

Regarding the age of the process, the simplest implementation is to not maintain an age
indicator and just apply the command to all entries in the queue. A simple age indica-
tor, on the other hand, is a single age b i t for each cell, where zero means young and one
means old. Under this scheme, when an entry is placed into a cell, its age bit is cleared
to zero. When the promote command is subsequently given, it is applied to all entries
whose age bit is one, and then all age bits are set to one.16

Regarding raising the priorities, let us assume that larger numbers designate higher
priorities. The argument u can then be bitwise OR'd with the priorities of the old
processes. This can be implemented indirectly by making the priority bits of a cell indi-
vidually loadable, and having the bits of u that are one trigger the loading of the
corresponding priority bits of the old entries. Alternatively, the ones of u can trigger the
setting (instead of loading) of those bits if that is simpler. The result is the same, in
either case - the bits take on the value one. (If smaller numbers designate higher prior-
ities, then v is bitwise AND'd, which is equivalent to the zeros of u triggering loading or
clearing.)

To be specific, let us assume that a priority has seven bits and that v is 100 (binary).
Then an entry having priority zzzzOzz would be given the new priority zzzzlzz
(where the z's are not necessarily equal). Notice that this not only raises priorities
OOOOOzz, but also raises priorities that are greater than OOOOlrz if their bit two is zero,
thereby erasing some distinctions among higher priorities. This is a side effect of a sim-
ple hardware algorithm. However, it should not cause a problem since the effects of
priority distinctions cannot be finely tuned anyway because of all the other variability in
a multiprocessor computer system. Note also that the PCB of a process contains other
information about the priority of a process, so the chanie to the priority in a queue will
not destroy this PCB information.

Associativity. Will associativity be worth implementing? When the software wants to
kill a particular process that is on a queue, will it know what queue to look on? If not,
should it search several queues, or else (in a broadcast system) enter the process ID in a
global, associative table, to be accessed whenever a process is enqueued or dequeuedl

~

The most general acheme - of theoretical interat only - is to have an age counter for each cell.
When an entry k enqueued, ita counter is set to a high value of interest, say 211 ones. At each promote
command, the command is applied to all entries having value zero, and all counters not yet zero are then
decremented.

en

Switch Interlace. Only three commands are needed for the queue operations under
the original scenario, one command for each of the operations h i t , enqueue, dequeue.
On a standard bus, these commands would be implemented using memory m a t e for init
and enqueue, and memory read for dequeue, along with one other bit to distinguish
between init and enqueue. If the bus did not have a user-specifiable bit, the second bit
would be one of the data bits.

If FIFO mode is implemented, another h i t command will be needed. If starvation is to
be precluded using the promote command, a fifth command is needed. And if deletion
by process ID is desired, a second dequeuing command must be included, bringing the
total to six.

Partitioning. If the collection of processes and process queues in the system can be
partitioned so that processes in a set primarily access queues in that set, then local MPUs
may pay off (Figure 26). In this case, a set will be assigned to one processor and its W G
so that processes running on that processor need not access the switch in order to access
the queues in their set. Such partitioning and assignment to processors will also improve
the effect of the caches as local memories, since the processes running on a processor will
now tend to access the same shared data, rather than data accessed by processes on
other processors. Under this organization, preemption by higher priority processes would
be undesirable across processors and thus would be confined to each processor, as with a
non-broadcast parallel switch.

Entry Information. "Bat information shouid be piaced in a queue entry? May it be
desirable to enqueue information other than just the process ID and priority? For exam-
ple, under partitioning, a processor ID should be included, indicating the processor that
the process should be run on: when taken from a sleep-wait queue, the process would be
put on that processor's ready queue.

- 61 -

C.2. Paradigm for High-Contention Atomic Operations

A general paradigm has been illustrated here using sleep/priority queues:

We may call a chip containing these circuits an MPU since it may be thought of as an
intelligent memory unit.

Implement high-contention atomic operations in CZSI circuits at the memory cells.

The advantages of this paradigm are less switch traffic and greater concurrency. Briefly,
the CPU is relieved of executing the atomic operations, the bus is relieved of carrying
the corresponding traffic, and the MPU executes the atomic operations themselves at
high speed. More specifically, we have the following.

Less switch traffic
o Atom is not transferred to CPU, but is left at MPU
o Little data is transferred between CPU and MPU
o Switch is not held during CPU operation
o Atom is not locked or busy-waited on

o Concurrency between CPU and MPU
o Concurrency in MPU circuit

Concurrency among processes accessing atom
0 Concurrency among processors accessing the switch

Greater concurrency

Let us look at each advantage, in turn, then at two final considerations - the idea of a
general purpose MPU, and the suitability for VLSI implementation.

Lesa Switch T r d c . Use of the memory switch is conserved by leaving the atom at
the MPU - where the MPU executes the atomic operation - rather than transferring it
from CPU to CPU. If the atom is small, in particular, one bus data-word, there is no
significant saving here. But if parts of it may occur on several memory blocks, then it is
a significant help to avoid .the frequent switch accesses otherwise necessary to transfer all
of it from CPU to CPL?. Keep in mind that since the operation of interest is a high con-
tention operation, even if there are caches, the atom will probably not stay in a cache
very long after being used there, but will soon be fetched by another cache for use by its
CPU. Consequently, caches offer little, if any, help in reducing the frequency of transfer
from CPU to CPU.

The CPU could alternatively leave the atom in the MPU but hold the switch while it
operates on it, fetching just the words of interest. Or it could busy.or sleep wait for
access, eventually locking the atom, then fetch just the words of interest, and finally
unlock the atom. But any such scheme consumes more bus cycles than the MPU scheme.

The MPU alternative is to transfer a small amount of data from the CPU to the mu,
along with the request and address, and then to transfer a small amount of data from the

- R 2 -

mu back to the CPU, including current status information. To illustrate, for a p
operation, a process ID and priority are sent to the MPU, and the current count value
and full indicator are read out and sent to the CPU. This exchange would ideally take
place as fast as a read from high-speed memory: the first phase is the address phase,
during which the address, request, and data are latched by the addressed queue; while
the second phase is the data phase, during which the data is read from the queue regis-
ters and latched by the CPU. However, if the same data lines must be used in both
phases, then the transfer will probably require two switch cycles, rather than just one.

Concurrency. After the CPU receives the status information, it no longer needs the
switch, so releases it. The CPU then evaluates the status information, say the count
value and the full indicator, and the MPU continues to execute the operation it started
upon receiving the request. The concurrency between the CPU and MPU, here, is what
allows the CPU to release the switch so soon, not holding it while it or the MPU executes
the operation.

In executing the request, furthermore, the MPU utilizes the parallel logic in its circuit to
execute the operation faster than software could ever execute it. Hopefully the circuit is
fast enough to service successive requests as fast as could be delivered on the switch.
But if the hlOS technology of the day does not meet this speed, successive requests to
the same atom will suffer some delay, though successive requests to daerent atoms in
the same MFW will incur no delay.

Notice, furthermore, that since no locking and unlocking of the atom is necessary, the
atom is available whenever the switch connected to it is available (excepting delay that
may be unavoidable in successive requests to the same atom). .And since the operation
executed by the parallel circuit is much faster than a software implementation - as fast
as a read from high-speed memory - there will be less contention for access to the atom.
Consequently, there is greater concurrency among the processes in pursuing their activi-
ties since they are not waiting as long to gain access to the high-contention atoms.

Finally, implicit in all of this is the implication that since there is less switch traffic, there
is greater concurrency among processors in the system.’Furthermore, broadcast is not
needed for this algorithm, as it is for high-speed synchronization of caches, so this a l p
rithm can easily be implemented in a parallel switch.

General Purpose MPU, One may ask, why not use a general purpose processor to
manage the atomic operations at memory, thereby allowing many diEerent kinds of
operations to be done? Queues, for example, could then be variable size. The reason is
that the generality would be purchased at the expense of speed, and speed is essential
because the atomic operations of interest are high contention. An MPU will only pay for
itself in dealing with high-contention atomic operations; low contention operations can
conveniently be done by the CPUs.

Suitability for VLSI Implementation, Finally, the kind of MPU envisioned is

appropriate for VLSI implementation since it will consist of a highly regular structure.
To be specific, a few kinds of cells, say queueentry and queue-header cells, will be repli-
cated many times on a chip, and will be managed by relatively simple control.

One hears over and over chat computer designers must have a vision for what technology
offers them, so that they can capitalize on it. This is my vision.17

*' Designing one of these chips appears to me to be no more complex thjn a project for the introducto-
rY m d i n r
the circuit celb as compact and as fast as m i b l e . In fact, these two issues are the major low-level q u e
tions still in my mind regarding queue circuits: How many queues of what size can B t on a chip? How
fast can a queue operate?

Course 8t Berkeley. Sophisticated design experience can be important, just the same,

D. Conclusion

D.l. t-iion for Fast Synchronization 67
D.2. But of Both Worlds 88
D.3. Evaluation of Features 69

D. Conclusion

D.l. Vision for Fast Synchronization 67
D.2. &st of Both Worlds 68
D.3. Evaluation of Features 69

D.1. Viion for Fast Synchronization

We have explored the three low-level synchronization issues for shared-memory architec-
ture and proposed new mechanics for corresponding high-performance implementation.
0 Synchronization of caches - for broadcast switch
0 Implementation of busy wait - for broadcast switch
0 Implementation of sleep wait - for any switch

Let us now recall the two reasons for using busy wait.
0 A situation where busy wait is less costly than sleep wait
0 A system where busy wait is necessory in order to implement sleep wait
If the hardware implementation of sleepwait queues proves itself - if the performance
advantage in the system of interest is worth the additional hardware cost - then the
second occasion for busy wait will vanish. In such a system I envision sleep wait costing
very little in bus t r a c or processor time. But in any other system, the second reason
for busy wait remains, making efficient busy m i t critical:

Eliminating unsuccessful retries from the bus
Relieving a waiting processor of polling the status of a lock, thereby allowing it to
work while waiting

The efficient busy-wait scheme developed here fulfills both of these requirements, and in
addition, generates no interference with any processor's use of its cache.

Furthermore, where synchronization does not involve one process waiting for another (as
it does in a producer/consumer relationship), I envision fust 8ynchronizution operutions
based on busy wait, in which wuiting is rarely necessury: I imagine the processes in the
system communicating rapidly using fast operations whose target atoms are each con-
tained entirely on a single memory block. The efficient locking scheme introduced here
will enable a cache to fetch an atom for write privilege and lock the block as it arrives
and the first operand is read. The processor will then execute a fas t operation on the
atom and unlock it with the final write to the block. The locking, the operation, and the
unlocking are fast and efficient. In particular, the locking und unlocking incur no pro-
cessor time O r bus trumc in this case.

In short, my vision for high-speed synchronization is that it may prove strategic for
hardware to implement sleep-wait qucue8, thereby realizing high-speed sleep wait with
minimal bus tr&c and processor time. But if this idea does not prove itself, I look to
Aighly-efirient busy wuit, which incurs no unnecessary bus accesses and allows a

- 67 -

processor to work while waiting. Finally, I envision fast synchronization operation on
small atoms, where locking and unlocking incur no processor time or bus traffic at all.

D.2. Best of Both Worlds

We have seen three examples of the ability of broadcast to synchronize or coordinate a
group of devices at high speed.
0 Synchronize caches - read/write sharing of data
0 Synchronize processors - notification of lock release in busy waiting

Synchronize processors - preemption of process by higher priority process
Broadcast is possible with both parallel switch and single-bus; however it is clearly more
expensive with a parallel switch, requiring n buses.

Following the innovative idea of Professor Al Despain, in Project Aquarius at Berkeley
we propose to incorporate into the same system the best of both worlds - that of the
parallel switch and that o/ the bus. (Dobry, Despain, Patt 1985) The parallel switch
allows many processors to access main memory concurrently, while the bus provides
high-speed synchronization operations at reasonable cost. In particular, we recall that
the hardware needs to serialize conflicting access requests only for hard atoms, since the
software serializes access to soft atoms. Therefore, we propose an architecture having
two switch-memory systems: one system for hard atoms and software synchronization
structures, using a bus; and one system for all other objects, using a parallel
switch.(Figures 2T,38)

Synchronization system - bus
0 Hard atoms: counters, locks, sleep/priority queues, and such
o So ftware synchronization sttuctures: reader/writer synchronization

descriptor/queues, and such
Data system - parallel switch

Instructions
o Unshared data
o Soft atoms (other than synchronization structures): shared buffers, and such

9

The major activity of the synchronization system will be to provide high-speed syn-
chronization among the processors, and among processes running on the same processor.
The operations in the synchronization system will include fast operations on small, hard
atoms, as well as more complex operations on structures such as reader/writer
descripton/queues. These operations will use the lock state in the caches, if there are
caches, or else will use a single lock register, to implement busy-wait locking on the
atoms. Efficient waiting using a busy-wait register will also be employed. In addition,
the- synchronization system will implement sleep and servicerequest priority queues. If
the performance benefit of the hardware priority queues appears warranted, they will be
implemented in VLSI to provide fast queuing operations and to eliminate busy wait.

It is not yet clear if caches will pay off since most, if not all, operations in the synchroni-
zation system will be read-modify-writes on high-contention atoms. In this case, the hit
rate on reads will be close to zero, but it will be close to one for writes, and nearly all
blocks in a cache will be be dirty. Therefore, the purpose of the caches, as opposed to
faster processor-registers, would be to reduce the number of writes on the bus. This
would occur if a cache never had to purge a (dirty) block when fetching a new one -
because the block that was previously in the target frame had already been fetched by
another cache. So if no purging is necessary, the caches would reduce the data
read/write traffic on the synchronization system bus by half by eliminating the writes, in
the read-modify-write operations. The rest of the bus traffic would consist of unsuccess-
ful busy-wait tries and hardware queue accesses.

In contrast, the data system will contain most soft atoms, unshared writable data, and
read-only d a t a The major activity of this system will be to access and to share large
data structures - sharing that will be synchronized in the synchronization system - as
well to access unshared and read-only d a t a This system will also maintain the state of
the processes in their process control blocks, since a process state will be too large to
manage in the synchronization system, which will be devoted to relatively fast operations
on small variables and structures. The cache synchronization system, here, will be a
non-broadcast system, as described in -4ppendix 4.18

D.3. Evaluation of Featurea

The next step is to evaluate the proposed architectural features for fast synchronization
in the context of a particular system of interest in order to determine how beneficial each
feature is in that system - to determine if each feature is worth its cost in that system.
A stochastic modef informed by simulation will enable this evaluation to be made. In
Project Aquarius, our focus will be on evaluating these features with respect to the mul-
tiprocessor architecture shown in Figure 28, which is being designed as a high perfor-
mance system to execute Prolog. I am currently formulating a stochastic model to use in
making the evaluation.

1

** A precedent for tbe split-level, tigbtly-coupkd Aquarius archikctore is tbc looselytouplcd. d.t.dor
architecture of Srini (1980; 1985). The latter has two commanicacion system, one for urgent, short com-
munications, and -other for normal-priority and long communications.

- 69 -

References

Archibald, J., Baer, J-L. “An economical solution to the cache coherence problem.” 11th
Ann. Intl. Symp. Comp. Arch., 1984, 353-362.

Archibald, J., Baer, J-L. “An evaluation of cache coherence solutions in shared-bus mul-
tiprocessors.“ U. of Wash. Tech. Report 85-10-03, October 1985.

Bell, C.G., Burkhart, H.B. III, Emmerich, S., Anzelmo, A., Moore, R., Schanin, D., Piassi,
I., Rupp, C. “The Encore Continuum.” MIPS Conf. Proc., NCC, Vol. 54, 1985,
147- 155.

Borriello, G., Eggers, S., Katz, R., McKinley, H., Perkins, C., Scott, W., Sheldon, R.,
Whalen, S., Wood, D. “Design and implementation of an integrated snooping data
cache.” Tech. Report UCB/CSD 84/199, U. of Calif. Berkeley, Jan. 1985. The
sequel to this report is Katz et al. (1985).

Censier, L.M., Feautrier, P. “A new solution to coherence problems in multicache sys-
tems.” IEEE Trans. Comput., C-27(12), Dec. 1978, 1112-1118.

Colwell, R.P., Hitchcock, C.Y. IIl, Jensen, E.D., Sprunt, H.M.B., Kollar, C.P. Tomput-
ers, complexity, and controversy.” Computer, 18(9), Sept. 1985, 8-19. Rebuttal:
Patterson. D., Hennessy, J., “Response to ‘Computers, complexity, and controversy,”’
Computer, 18(11), Nov. 1983, 142-143.

Denning, P. J. “Virtual memory,” Computing Surueys, 2(3), Sept. 1970, 153-189.

Denning, P. J., Dennis, T.D., Brumfield, J.A. “Low contention semaphores and ready
lists,” CACM, 24(lo), Oct. 1981, 687-699.

Dijkstra, E.W. “Hierarchical ordering of sequential processes.” In Hoare and Perrott
(eds), Operating Systems Techniques, Ny: Academic, 1972, i2-93.

1

Dobry, T.P., Despain, A.M., Patt, Y.N. “Performance studies of a Prolog machine archi-
tecture.” 12th Ann. Intl. Symp. Comp. Arch., 1985.

Edler, J., Gottlieb, A., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M., Teller, P.J.,
Wilson, J. “Issues related to MIMD shared-memory computers.” 12th Ann. Intl.
Symp. Comp. Arch., 1985, 126135.

Frank, S. “Tightly coupled multiprocessor system speeds memory-access times.” Eke-
tronics , Jan. 12, 1984. This article describes the Synapse computer system.

Gajski, D.D., Peir, J-K. “Essential issues in multiprocessor systems.” Computer, 18(6),
June 1985,%2’i.

Goodman, J.R. “Using cache memory to reduce processor-memory traffic.” 10th Ann.
Intl. Symp. Comp. Arch., 1983, 124131. An updated version is U. of Wisconsin
Computer Sciences Technical Report #S80.

Gottlieb, A, Lubachevsky, J., Rudolph, L. “Basic techniques for the efficient coordina-
tion of very large numbers of cooperating sequential processes.” A C M Trans. B o g .
Lung. and Sys., 5(2), April 1983, 164-189.

Guide to Parallel Rogramming. Portland, OR: Sequent Computer Systems. June 3,
1985.

Hill, M.D., Smith, A. J. “Experimental evaluation of on-chip microprocessor cache
memories.” 11th Ann. Intl. Symp. Comp. Arch., 1984, 158-166.

Katz, R.H., Eggers, S.J., Wood, DA, Perkins, C.L., Sheldon, R.G. “Implementing a
cache consistency protocol.” 12th -4nn. Intl. Symp. Comp. Arch., 1986, 276-283.
This is the sequel to Borriello et al. (1985).

Kepecs, J. “Lightweight processes for Unix.” Usmh Con!. Fkoc., June 1986, 299-308.

.%IC68000 16-Bit Microprocessor User’s Manual. Englewood Cliffs, NJ PrenticeHall,
1982.

‘11 T Sorton, R.L., Abraham, J.A.
tiuser multiprocessors.” Intl. Con f. on Par. Roc. , 1982, 326-331.

using write tack cache t~ i i i i p r ~ ~ ~ peifGiiiiaCc of

Papamarcos, M.S., Patel, J.H. “A low-overhead coherence solution for multiprocessors
with private cache memories.” 11th Ann. Intl. Symp. Comp. Arch., 1984, 348-354.

Patterson, D.A. “Reduced Instruction Set Computers,” CACM, 28(l), Jan. 1986, 8-21.

Peterson, J.L., Silberschatz, A. Operating System Concepts. Reading, Mass: Addison-
Ivesley, 198b. 3

Rector, R., N e w , G. TZte 8086 Book. Berkeley, CA: Osborne/McGraw-Hill, 1980.

Reed, D.P., Kanodia, R.K. “Synchronization with eventcounts and sequencers.” C.4C‘M,
22(2), Feb. 1979, 115-123.

Rudolph, L., Segall, Z. “Dynamic decentralized cache schemes for hmfD parallel pro-
. cessors.” 11th Ann. Intl. Symp. Comp. Arch., 1984,31&347.

Smith. -4.5. “Characterizing the storage process and its effect on the update of main
memory by .write through.” JACM, 26(l), Jan. 1979, 6-27.

- 71 -

Smith, A.J. “Cache memories.” Computing Surveys, 14(3), Sept. ‘1982, 473-530.
Smith (1984) is an updated version.

Smith, -4.5. “CPU Cache memories.” Draft April 24, 1984. To appear in M. Flynn
and G. Rossman (eds.), Handbook for Computer Designers. This is an updated ver-
sion of Smith (1982).

Smith, A.J. “Cache evaluation and the impact of workload choice.” 12th Ann. Intl.
Symp. Comp. Arch., 1985, 6-1-73.

Srini, V.P. “An extended abstract dataflow methodology for designing and modeling
reconfigurabie systems.” Ph.D. dissertation, C. of Southwestern Louisiana at Lafay-
ette, July 1980.

Srini, V.P. “A fault-tolerant dataflow system.” Computer, 18(3), March 1985, 54-68.

System Technical Summary. Portland, OR: Sequent Computer Systems. 1984.

Wilkes, M.V. “Slave memories and dynamic storage allocation,” IEEE Truns. EC-14,
April 1965, 270-271.

- 72 -

Acknow Iedgements

I thank Peter Denning for providing me the opportunity to pursue this research at
RLXS, summer 1985.

I am deeply grateful to my advisor Professor Alvin Despain for the many hours that he
has given toward discussing issues considered here, and for making many valuable
suggestions, a few of which are explicitly acknowledged in the text. As I was writing this
report, Al and I took time out to distill the essence of the ideas on caches and busy wait,
and to submit a paper to the 1986 International Symposium on Computer Architecture.
I used this distillation, in turn, in continuing my work on this report.

I thank Vason Srini and Steve Melvin for generously offering their time to carefully read
the first version of this report and provide extensive criticism. I thank George Ad-
who, along with Steve, helped me gain valuable perspective concerning AI Despain's idea
of full broadcast in a parallel switch.

I also thank Peter Denning, Luis Felipe Cabrera, Jung-Herng Chang, and Chien Chen for
their comments. I appreciate valuable interactions with Professors Yale Patt, Si Good-
man, David Patterson, John Ousterhout, and Alan Smith, as well as with Matt Bishop,
Bob Brown, Tep Dobry, Barry Fagin, Mike Karels, Gene Levin, Rick McGeer, Mike She-
banow, and John Swensen. And I am grateful to the other members of FtL4CS and
Aquarius, and to the Computer Science Division s t a , for their ongoing support.

This work was supported by RUCS grant S.4.S-2-11530, and DARPA (DoD) order 4871,
monitored by Naval Electronics Systems Command under contract YOOO39-84-C-0089.

Finally, I want to express my affectionate appreciation to a very special friend. She has
supported me through many long nights of work: my hamster Spunky. She worked
along with me, scampering around my room chewing everything t h z was chewable, as
well as most th ing that weren't. If the corners are missing on some of your pa, =e, as
they are on mine, this explains why.

*

- 73 -

Appendices

1. High-speed Memory Transfer 77
2. Processor Requests, Cache Responses, BPS Commands 79
3. Block-Invdidation Bus Traf6c 83
4. Non-Broadczut Cache Systems 98
5. Interrupt Management 102

Appendix I.

High-speed Memory Transfer

As stated in Section A2, Professor John Ousterhout has pointed out that computer
architects can help operating system (OS) designers greatly by devising a fast data
transfer operation, allowing fast 1/0 and fast memory-tememory transfer.

My solutions to this problem are two.
0 Direct Memory Trunsfer (DW): Direct memory-bmemory transfer is managed by

the memory units themselves. Transfer occurs at the maximum possible speed - the
clock rate.

0 Cuche-Mediated Trunsfer (Cm): A processor cache mediates a memory-to-memory
transfer using two DMT transfers. Hence the overall speed is half that of DMT, but
entails much simpler hardware and software.

Let us look at each in turn.

Direct Memory Transfer (DMT). Three principles will enable architects to realize
the full speed potential of memory and switch transfer.

Interleuw: Memory access must be pipelied using interleaving. The switch must
support it, allowing split address and data phases for reading.
Direct transfer: The two memory units involved in a transfer (main memory units,
1/0 processor buffers, or caches) must manage the transfers themselves so that the
data moves directly from one unit to the other, crossing onIy the switch and neces-
sary drivers and latches. No third processor should get in the way.
Switch synchronization: The switch allows data transfers to run as fast as the clock,
no handshaking necessary.

In short, one memoty unit directly tran8/ets to unother us just us the clock, hence an
appropriate name is direct memory transfer (DiWJ This is similar to direct memory
access (DMA), but in the present case a main memory unit (not just a cache or 1/0 pro-
cessor) has a control unit that allows it to initiate a transfer.

The reason that a main memory unit needs this power is so that high speed transfers can
be made from one part of main memory to another. But in order for this to be possible,
main memory must be split into at least two units, each interleaved and controlled as
stated. This requires the understanding of the OS. The OS needs to be aware of the
address bounds of the memory units so that it can plan high-speed transfers from one
unit to another. Under a virtual memory system, this can be implemented by reserving
several pagei in each unit for buffers to be used for this purpose.

It may not be convenient for the OS to arrange this, and portability of the high-speed
transfer may require some work. Consequently, let us explore a second memory-to=
memory transfer method that is about half the speed of the foregoing scheme, but avoids

- 77 -

the hardware and software complications noted.

Cache-Mediated Transfer (CMT). As mention-d in Section B.l.l, a CPU ch - a I

be used to implement fast memory-t&rnemory transfer. It simply needs to understand a
CPU command to fetch a block from one address and write it to another. The cache
will not bother storing the block in its data cells; it simply reads the block into its bus
assembly register and then writes it from there. (Smith (1982) and Borriello (1985) illus-
trate the internal components of a cache, for the interested reader.)

In order to synchronize with the other caches, the cache should fetch from the first
address with read privilege, then get write privilege to the second address (invalidating it
in its own directory, if present) as it finally writes to the second address, as in an input
operation (Section B.2.3).

The speed of cachemediated transfer is about half that of direct-memory transfer
because two DMT transfers are necessary per block. In addition, the CPU must com-
mand the cache to transfer block by block, unless the cache is given the intelligence to
transfer all blocks within a particular address range.

The advantage of CMT, though, is much simpler hardware and OS software. The cache
is already in place; its control just needs to be a little smarter. And the OS will not need
to be concerned about the bounds of memory units.

Intra-Memory-Unit Transfer. Finally, one could give a memory unit the capability
to do what the cache does, thereby freeing the switch. A memory unit could read out a
bIock into its data registers, then write the block back to itself. The target addresses
should already be available in its registers.

- 70 -

Appendix 2

Processor Requests, Cache Responses, BPS Commands

Details of processor requests, and the resulting cache responses and bus commands, are
given in the table that follows. In order to avoid cluttering the table, the following
events are omitted.
0 flit: If a cache has a block that is requested for read privilege via the bus, the cache

indicates this by signaling hit on the bus, so that the requester will not assume write
privilege if there is no source cache.

0 Source: If a source cache is present, it provides the block, along with its
clean/dirty/lock status, in response to a fetch request. The provision of the status
indicates the source's presence to main memory, which must then refrain from driv-
ing the bus. Also, the cache that fetches the block becomes its new source.

0 Cfean/Dirty: When a processor writes a block, the block becomes dirty.
0 Lock Waiter / B u s y Wait: When a locked block is requested by another cache, the

status becomes lock-uruiter in the cache holding the block, and the requester's 6usy-
wuit register is loaded.

Several examples will be considered now to show how the table is read. Keep in mind
that the figures will not be referred to here, but they do elucidate many of the details.

Suppose that a processor makes a request to read a word from its cache. The first four
lines of the table show the sequences of cuche nspmecs that may be generated by thi
processor request. The four major columns present the four major cases: the current
status of the block in the ptoceseotb cuche is invalid (or absent), read, write, or lock.
Suppose that the status is invalid or absent (a miss). Then the first line indicates that
the processor's cache presents a request to the bus to gain read (R) privilege to the block
and to fetch (F) the block. The next three lines present four minor columns showing the
four alternatives: the status of the block in another cache is invalid (or absent), read,
write, or lock (I/R/W/L). If the status is invalid or read, it remains invalid or read; if
write, it changes to read; and if lock, it stays lock (I/Ft/R/L). The resulting status in the
requester cache is, respectively, write (if invalid in all lother caches), read, read, and
invalid (or absent) (W/R/R/I). The cache, in turn, provides the target word to its p m
cessor, or garbage if the block was locked. (I[hint read is implemented, the cache will
have the actual word for its processor.)

T o consider another example, suppose the processor requests its cache to lock a block,
and the status of the block in the requester cache is read. Then the cache presents a
request to the bus to gain write (W) privilege to the block, but does not present a request
to fetch the block (no F), since it already has an up--date copy of it. If the block b
present in another cache, it can have only read status, since it has read status in the
requester cache. The status changes to invalid in that cache, and it changes to lock in
the requester cache. Finally, the requester cache provides the target word to its proces-
sor.

Table. Datdlr on Proecrror Rcqucrtr, C u h c Rcrponacr, and Bur Commaadr
Bur Commandr m d C u h c Rcrponrcr

Processor Requ est t o
Cache

Read

Wrfte /
Writewithout-Fetch a

Lock

Unlock

1/0 Rcd/Write'

Memory Mode'
Rcd/Write

Source purges dirty block

Sequence 01 Cache
Adions

Requcrta cache to bur
0th- cache initial rtatur
Other cache final rtatur
Requerta cache final rtatur

Requerta cache to bur
Other cache initial rtatur
Other cache final rtatur
Requerter cache final rtatur

Requerter cache to bur
Other cache initial rtatur
Other cache final rtatur
Requester cache final rtatur

Requcrta cache to bur
Requerter cache final rtatur

Requcrt to bur
A n y cache initial rtatur
A n y cache final rtatur

Repent to bur
A n y cache initial rtatur
A n y cache final rtatur

Reperter cache to bur
Other cache initial rtatur
Other cache final rtatur

Initial Status in Requester Cache
Invalid (or Absent) Read Write Lock

I
I
W

I
I
L

I
I

I
I

MM, F/S
IO W'O L'O I:: I w IL

-
-
-
R

W
R
I
W

w
R
I
L

R i
-

Purge, S - Purge, S - -
R
R.Src - -

- 80 -

Table Nota

0. .4bbreviatioo,

Abbreviut ion Meaning

-
A
F
I
L
MM
R
S
Src

U
W

Not appiicabk
Absent
Fetch the block
Invaiid (or absent)
Lock
Memory mode read or write
Read privilege
Store the block (in memory)
Source of Wcst version of block

Location of ckur/dirt]r status
for the block

Wben the block is requested by
another cache, the source provides
it and its current ckan/dirty/lock
status
0 When purging the biock, the
source flushes it if dirty
Unlock
Write privilege

1.

2.

3.

1.

5.

6.

7.

a.

9.

It b a bug to attempt to read a block that is
locked by another cache, unless hint read b
implemented.
Write privikge is assumed if the block is in-
valid (or absent) in dl other caches; other-
wise read privikge is assumed.
On a hit (Read/Write/Lock status), writ+
witboutfetch is handled by the cache like a
normal write rqaest. While on a mhr
(InvaIid/Absent), the block is not fetched,
hence the bas command is W, rather than
WP.
It i a bug to attempt to write a bbck thrt i
locked by another cache.
It is a bug to attempt to lock a block tbt m
already locked in yoar cache. Thb b
proccssslrritching interrupts shoald be di,
abkd when a busy-wait lock ir locked, as ex-
pliined in Section B.2.2. and a process &#id
not lock a block again before anlocking it.
A bus access is made only iftbe bck b rb
seot (had been purged) or if the state is lock-
waiter. An operand may accompany (reqair-
ing the store), depending on the design.
It is a bug to attempt to unlock a block that
b not locked in your cache.
The requester cache b q a i v d e n t to the 0th-
er caches for 1/0 and memory mode com-
maads.
It b a bug for 1/0 to be requested on a
locked block.

10. If the object b non-cachabk, such as an 1/0
port, it is a bug for the address to be valid in
the cache.

11. The o t h h cache takes source responsibility
and ckan/ditty the status for the block.

- 81 -

- 02 -

Append'u 3

Block-Invalidation Bus Traf3c

1. General Concepts 83
2. Invalidation Write-Through: Large Upper ban& 85
3. Invalidation Write-Through: Small Upper Bounds 88
4. Invalidation of Unshared Data 94

1. General Concepts

After enumerating the components of bus traffic, along with several models, we will
derive large upper bounds, and then smaller upper bounds, on the bus t r d c of
Goodman's (1983) invalidation writethrough (Section B.2.3, Feature 4). Then we will
briefly consider the bus traffic due to invalidating unshared data (Section B.2.3, Feature
5) . Keep in mind that the purpose of this section is not to make highly accurate esti-
mates, but simply to derive reasonable upper bounds in order to get a rough feel for the
fraction of bus traf€ic generated by invalidation writes.

Bus T r a c Components. Under an update-by-block (write-back) cache policy, the
bus traffic consists of the following components, some of which may not be present in
particular systems. All except for the 1/0 transfers are generated by a processor's cache.
The occasions for each are also indicated.

Block fetch from memory. Occasions:
0 Read miss (unshared us. shared data)
0 Write miss
0 Prefetch
Block fetch /rom another cache (faster than fetch from memory). Occasions:
3 Read miss (unshared us. shared data)
0 Write miss
0 Prefetch

0 Miss
0 Prefetch
0 Process switch or termination

Block flush to memory. Occasions:

5

Block invalidation in other caches. Occasions:
0 Write hit - if cache does not have write pril-iiege
0 Write miss - in addition to block fetch, Goodman requires an invalidation write-

through to memory

- 83 -
_ _ _ ~

0 1/0 transfer. Occasions:
u Input
G Output

We will limit our attention to the following components, for simplicity, in deriving upper
bounds:
0 Block fetch from memory

Q Miss
Block flush
u Miss
Block invalidation in other caches
o Write hit
u Write miss

Since we are restricting attention to only part of the total non-invalidation traffic (a
denominator), the resulting values regarding cost will be upper bounds.

Models. We need to make basic assumptions about bus arbitration and memory struc-
ture. It seems to me that there are two reasonable models for bus arbitration and four
for memory structure.

Bus arbitration
o Word trans fer: Every word transfer requires arbitration.
D Multiword transfer: The master can hold the bus through an arbitrarily long

multiword transfer.

u 1. Non-interleave; no address/data registers: Memory has no address or data
registers for servicing a read or write, so the master must hold and drive the
address/data bus throughout the read or write for the full memory latency.

Q 2. (Kon-interleave; address/data registers: Memory has address/data registers,
so a m ' t e costs only one bus cycle. If, in addition, the bus allows split
address/data phases for a read, a read costs on& two bus cycles - one for the
address and one for the data.)

0 3. Ezternal interleave; (address/data registers): Memory is externally inter-
leaved (each module is individually accessible to the processor), so it has
address/data registers. A wn'te costs one bus cycle, while a read costs two.

0 4. Internal interleave; (address/data registers): Memory is internally interleaved
(a module is not individually accessible to the processor), so on a block read, the
address is distributed internally to all modules in parallel, taking less than one bus
cycle per module.

Memory structure

Under the second memory model, if the bus does not allow split address/data phas- for
a read, this model simply reduces the cost of the invalidation write, as compared to the

- 84 -

first, SO the first eves us an upper bound for the two models. If, on the other hand, the
bus does allow split address/data phases, the second model becomes equivalent to the
external interleave model in terms of bus traffic. For simplicity, then, let us ignore the
second model.

Combining the two bus-arbitration models and the three resulting memory-structure
models gives us three models of interest.
0 bur pcrjonncrnce: arb. every word, non-interleave, no adr/data registers
0 Medium pcrfotmanee: arb. multiword, non-interleave, no adr/data registers
0 High perjonnancc: arb. multiword, external interleave, (adr/data registers)
0 liry high performance: arb. multiword, internal interleave, (adr/data registers)

2. Invalidation Write-Through: Large Upper Bounds

This topic emerges from Section B.2.3, Feature 4. Let use first consider just the block
fetch and the inualidafion wn'tc on a wn'te miss, and in doing so we will derive the
large upper bound l/n-d, on C0st;,,~1.~, where n,d is the number of bus words in a
memory block. The invalidation on a write hit can be ignored in deriving an upper
bound, since any scheme requires a bus access in this case, whereas only Goodman's
scheme requires an extra access to invalidate on a write miss.

Low/Med/High Performance Models. In this context, let us define the following
variables.

lfan'able !Vumber o f ...

arb

nlat

nlLvitc
%cad

R/ctch

Bus data-words in a block

,Vumbcr of bus cpcles required for ...

Bus arbitration (narb = 0 if arb. is overlappe$ with prior transfer)
(Only the successful arbitration is counted. An unsuccessful arbitration is
counted in the cost of the processor that won it.)

Memory read latency for internal interleave model
Memory read (nrC,d = 2 under external interleave model)
Memory write (n-.,, nrcad; = 1 under external interleave model)
Fetching a block

The fractional increase in bus traffic due to the invalidation write is the ratio of the total
traffic in a system with that write to the total traffic in a system without that write,
minus one. Since we are currently limiting our attention to the block fetch and the

invalidation write on a write miss, this increase, Cosf;,val.w, is as follows.

We see that the cost fraction is just the ratio of the invalidation write traffic, to the
traffic in a system without those writes.

The subsequent equations indicate the value of Cosf;,,wl.w under each model. The cost
under the high performance (external interleave) model is just the cost under the
medium performance model with nre,d = 2, n-ete = 1; while the internal interleave
model reduces to the external interleave model if qat = nwordr.

Medium perf. (n-.,, 5 raread, ramstc X nread):

High perf. - external interleave (n-et, = 1, nteod = 2)s

Very high perf. - internal interleave (n-.,, = nrcod = 1, nlot n-d.):

- 86 -
~

Xow consider two observatio
relevant.

Order:

Overlapped arb. (narb = 0):

Regarding order, Codhi,,/ < Costv.hip,/ to the extent that n-dr > nlat. COSt,+,/

< Costrn+e/ to the extent that nm*te nread > 2. COStmed.p-1 < Co8flogef to the
extent that nu,+ > 0, assuming n d n-ete. And cost loge^ < l/n,* to the extent
that < nread-

We see that the ordering implies the large upper bound mentioned at the outset:

Large upper boun&

In addition, under overlapped arbitration, the costs of the low and medium performance
models are about the same, namely l / R - d r t since == ntesd. Their cost is a h
twice that of the high performance model.

- 87 -

3. Invalidation Write-Through: Small Upper Bounds

Having examined large upper bounds for the cost, let us turn our attention to estimating
the cost more closely. Specifically, let us look at the invalidation write in the contest,
not only of block fetches and invalidations, but also in the context of flushes.

Variables. With this in mind, let us define the following variables, some of which we
have already seen. It is assumed that only data is written - the code does not modify
itself.

Variable

ntuordr

1.h n’a 61 e

Number of ...

Bus data-words in a block

Number of bus cwles rewired for ...

- 88 -

narb

nread

nu7ite

njetch

nflurh

ninva1.w

Variable

Bus arbitration (nor* = 0 if arb. is overlapped with prior transfer)
(Only the successful arbitration is counted. An unsuccessful arbitration is
counted in the cost of the processor that won it.)

Memory read (nrcad = 2 under external interleave model)
Memory write (n-.,, 5 nrcad; nwitc = 1 under external interleave model)

Fetching a block
Flushing a block

An invalidation write (ninwal.w = 0 in a scheme without the write)

me urobabilitu that a urocessor memoru reference causes ...
(Kote: ‘8’ represents logical conjunction, or equivalently, set intersection.)

A miss *

A read miss - A write miss (P r c a d h i r r + Pwritcehnirr - P m i r r)

A data read or write miss
A data-read miss (Pdata&icadehnirr + P ~ t c e h n i r r = P d e t a h i r r 1
An instruction (P i n 8 h b 8 + Pdata&kcodhhr = P r e a d h i r r)

A dirty miss, that is, a dirty block must be replaced on the miss

Equations. The ratio of mean miss t r d c in a system with the invalidation write, to
mean miss traffic in a system without the write, is the basis from which Costinval.w, or
the fractional increase in traffic due to the invalidation write, is calculated.

The ratio may be less than one, it turns out. This is because the invalidation-write
scheme can produce less traffic than the other by reducing the number of dirty blocks,
since the invalidation write makes the block clean, though written once. So if the block
is purged before being written again, it will not need to be flushed. The negativity of
the cost, thus, shows the fractional decrease in traffic due to the invalidation write.

The mean miss traffic generated by the processor on a miss consists of the following:

h o f f i c (X) & n h = Prcad&ni80n fetch + P a d c e h i . r (fetch + ninwf.9vr + P d i r t l y (X) & n i 8 r n ~ h

where X = inva1.m (invalidation-write scheme) or no.inva1.w. In the former case,
n;nval.w > 0, while in the latter ninml.m = 0.

The ratio and cost expanded are

In general, the number of dirty blocks under an invalidation-write system may be less
than the number of dirty blocb under an alternative system, m a b g

cost when the traffic ratio is greater than one (the invalidation-write system is worse), SO

we can simplify by assuming the two are equal. Then the traffic ratio will be greater
than one, and the fractional increase in traffic due to the invalidation write will be posE
tive.

Pdirty(inval.w)&abo Pdirtp(no.hd.vr)&hi##- We are interested in an upper bound On the

- 89 -

For the sake of simplicity, now, let us consider just two extreme modeisi the low perfor-
mance model and the high performance model, for these yielded the largest and smallest
upper bounds on Cod;n,a~.w, respectively.

Low performance: arbitrate every word, non-interleave, no addressldata registers
High performance: arbitrate multiword, external interleave, (address/data registers)

Assume just one arbitration for a flush, fetch, and invalidation write
In the high performance model, we will assume that if a flush or invalidation write is
necessary, neither requires another bus arbitration. Instead, the flush, fetch, and invali-
dation write will run back-to-back, requiring just one arbitration for all.

The following equations, then, emerge. Notice that the bus traffic at a fetch and an
invalidation write are as before (Equations 33).

Low perf

nfeteh(lo.perf) = (natb %cad nwmd8

High perf:

fetch(hi.perf) = narb + 2nwmdr

Low perf
-

*inval.wr(lo.per/) - natb + nwrite

High perf

ninual.w(hi.per/) = 1

Regarding the flush traffic, in th low perform ce system, tb flush t r a c is the same as
the fetch traffic, while in the high performance system, a flush requires just one bus cycle
for every word, due to the interleaving.

Low perf: 1

nfiwh(ro.pcr/) n/e:eh(lo.pcr/) (16)

High perf:
- n~u8h(hi .pcr i) - n w r d r

- 80 -

Since we are interested in an upper bound on COS^;,,^^.^, we can simplify, as mentioned,
by e1in;iaating the potential advantage of the invalidation write, and let . .
Pditty(inwf.~)&ni88 = Pdirtg(no.inwh~)Bmi.. 9 gv*g us

Numerid Cdcalations. In order to calculate this d u e we would like Pdidv&i88,
puktchi88, and prni8. from the same cache and set of traces, with cache size varied. My
source for this kind of information is the work of Professor Alan Smith, but the desired
data is not wailable in the papers that I have. (See the references.) However, my per-
sistent efforts were not entirely unsuccessful, for I was able to locate three sources from
which I could derive the desired values. The sources do not represent the same cache
and set of traces. Yet the values range widely from trace to trace on the same cache,
anyway, so even if they had the same source, we would still be looking at a wide range
of values. -4nd that range would probably have a large intersection with the range that I
do have.

In Smith (1979, p. 24) 1 discovered PdiHNImi8, = .18 to 5 6 , in an 8K-byte, &way associa-
tive, instruction-and-data cache having 33-byte blocks. This is the fraction of replaced
blocks that were dirty. (Smith, 1985, shows the fraction'bf dirty blocks pdiHtr in a 16K-
byte, fully-associative data cache to range from 2 0 to -80.)

From data in Smith (1984, p. 17.1 - 17.2), 1 derived p--tc~ (d&,&i,r) = .3 to .5 for a
K-byte, %way associative, data cache having lbbyte blocks. This is the probability
that a data miss is a write miss, and is derived from <P-*tefii8, I data, Pmi## I data > pairs
by dividing the first by the second. I conditionalized on Pdota&,i88 in order to use
<instruction, data> miss-rate pairs, described next.

h Smith (1982, fig. 25-28) 1 discovered pmir8 in# and Pmi.8 i data p k for B range Of

instruction and data cache sizes starting with a 2K-bytel direct-mapped cache and

- 91 -

continuing beyond a 64K-byte, 32-way associative cache. (The number of sets was held
constant at 64, and block size was maintained a t 32 bytes. Keep in mind that after set
size reaches eight, it has little further effect on decreasing the miss rate. This was shown
earlier in Smith’s paper. Also, for each size value, the instruction and data caches were
the same size.) 1 took my values from Figure 25: pmirr I in. = .004 to .OS, pmirr I doto =
.02 to .OS. The two variables are not independent, but are paired along the two ranges
shown.

Finally, Smith (1985) shows that data references comprise about .25 to .SO of the
memory references for microprocessor and mini/mainframe computers, respectively; that
is, Pdoto = 2 5 to .SO, pin* = . i 5 to S O .

Assuming that it is meaningful to relate the values from the different situations, since
their ranges are so large, we can derive the values we need.

(21) -
Pmirr - Pinrehni88 + P k t 0 & ~ 8 8

- - Pmirr I inr Pin8 + Pmirr I doto Pdoto

Pdirtyeknirr = Pdirty I mirr Pmirr

purritceknirr == p - ~ , c ~ o t o e h n ~ r r (assuming only data blocks are written)
- - P - h I (dotoehnirr) Pdotoehnirr

With these values in hand, I selected a range of the variables of interest, and calculated
the costs for the low performance and high performance models. Since Cost increases in
Pdo;,, (the numerator increases faster than the denominator), and since we are interested
in upper bounds, for simplicity I Iet Pdot,, = .SO. The results are shown in Table 1. We
can see that all cost values are well below the upper bound of l / n w m d 8 .

- 92 -

l o 3
1 0 3
1 0
1 0
1 0 5
1 0 5

*
* L

a
a

* a 0

a
a
a

? O

t o 0

3 0
2 0
2 0

? e

a
a

* a 0

a
a
a

60

4 0
4 0
4 0 0

4 0
4 0
4 0

M U
10 bl

0 3.1 1.7
5 2 2.8
2s ld
4 3 2 . 3

0

26

- 93 -

4. Invalidation of Unshared Data

This issue emerges from Section B.2.3, Feature 5. As noted there, upper bounds can be
obtained by assuming that all data is unshared, all misses are read misses, and all data
blocks are written. In this case, a scheme that does not fetch unshared data for write
privilege on a read miss will require a later bus access for every block that is fetched in
order to invalidate the block in other caches. Consequently, an upper bound on the f r e
quency of these invalidations is the data miss-rate Pdata@h;##.

A smaller upper bound on the frequency of invalidating unshared data is obtained by
dropping the last two assumptions, retaining just the first - all data is unshared. Sup-
pose, in addition, this data always arrives clean, as it does if fetched from memory, as in
a uniprocessor system. Then an upper bound on the frequency of invalidations in a
scheme that does not fetch unshared data for write-privilege on read misses is the fre-
quency of a write hit to a clean block p-*tc&h;t&;cat). I derive this value as follows, since I
am not aware of any direct measurement of it.

Pu!ritc~hit&Xean - - P-*tc&cLcan - Pum~tc@hirr&lcan (22)

(23)

(24)

- - Pmim Pdirty - Pwitcehnirr

- Pdataehnirr Pdirty I data - P w i t e h i r n
-

(Equation 23 or 34 is used to calculate P,,,,,*tc&hi&;can, according to the data that is avail-
able.) The equality of the first terms of the right-hand sides becomes evident from the
following identities.

Pminr Pdirty = # block fetches . # blocks written
block fetches # mem. refs

blocks written - - Pwritc&~can # mem. refs

(25)

The number of blocks written, here, really means the number of block fetches in which
the block is subsequently written before being purged, while Pdirty is the fraction of dirty
blocks. Equation 25, then, accounts for Equation 23, while Equation 24 is verified in an
equivalent way by restricting attention to data blocks, and by assuming that only data
blocks are written (the code does not modify itself). The variable pdirtyl data is the frac-
tion of data blocks that are dirty.

Having derived the frequency of invalidations, note that the invalidation itself will cost
narb + 1 bus cycles.

Upper bounds on C08tinua; follow by replacing the numerator in the earlier expressions of
C0sfinua1.w by P-':e&hi:&&an (nor) + 11, (Equations 18,19,20). I use Equation 2 1 to tal-
Cuhte p-.temit&lean since Smith (1985) provides values of pdirtv I data (for unshared data)
by purging the entire data cache periodically. These values range from .2 to .8, but tend
toward .5.

I - 94 -

Rather than consider a whole new table comparable to Table 1, for simplicity let us take
the ratio of the numerators, which are independent of n-d,, and this will give us the
ratio of the costs. Table 2, then, shows resulting values, along with the quotient
Costinwl / C0stinsai.w 9 which is obtained from the ratio of the two numerators, and
d o w s Costinvd i.o be conveniently derived from Costi,d, in Table 1. Notice that
Pdirfg I duk is shown for both the central value .5 and the largest value .8. The latter is
included since we are interested in upper bounds on the cost.

Tsble 2, Vduea Relevant to Determining
Approximate Upper Bounds on Bus Trritlc for Invalidating Unshared Data

(Based on values from Table 1. I* ' means "same a8 above. ")

C O S t k d
Pdim 1 d.ta Pdat0Elmi.r ~lmik&nio~ PwrtXc~tlkf..n

.5 .01 .003 .oO20 -67 (nd+l)

.5 .01 .005 0 0

.5 .025 .ow5 . W O 37 (na,++l)

.5 .025 .OX25 0 0

.8 .0050 1.67 (n.,++l)

.8 * * .oO30 .60 (nd+f)

.8 -007s -60 (nar6+1)

.8 .0125 1.67 (nd+l)

According to Table 2, for ottetlappcd arbifnrfion (n d d) , approximate upper bounds on
Cosf;,,, can usually be derived by multiplying the values Costi,,d, in Table 1 by 2/3.
So the fraction of bus t r a c for invalidating unshared data tends to be weIl under
1/nwd, in this case. When multiplying by 1.67, the largest ratio of Table 2, the result
ing values are sti l l well under l/n,-,,.

%

The small amount of bus t r d c required for invalidating unshared data in this case is
also evident in the simulations of Archibdd and Baer (1985). In handling anshared
four-word blocks, the Papamarcos and Patel (1984) scheme, which fetches anshared data
for write privilege, has only a very small advantage over the naive protocol of Katz et d.
(1985), which does not fetch unshared data for write privilege.

Finally, we see, the larger nad, the grerrter the cost of invalidating unshsred d a h

- 96 -

Appendix 4

Non-Broadcast Cache Systems

1. Cache Synchronization 96
2. Efficient Busy Wait 98

1. Cache Synchronization

The split-level Aquarius architecture has a broadcast-cache system upstairs and a non-
broadcast system downstairs, so we are concerned with efficient cache synchronization in
both kinds of system (Section D.2). Although the non-broadcast system will hold no
hard atoms, for completeness let us examine the issues of a general non-broadcast cache
system in which hard atoms can reside.

From Section B.1.3, we recall the two hardware tasks in cache synchronization.
Serialize conflicting access requests: hard atoms only

0 Provide the latest version of requested block: all objects
We will now look at hard atoms and all other writable objects, respectively.

Hard Atoms

Let us make several reasonable simplifying assumptions.
Fast read-modify-um'te: A hard atom is used for fast atomic read-modify-write
operations.
Single block: A hard atom is contained entirely on a single memory block.
Busy wait: Busy wait is less costly than sleep wait for this case, so is preferable.
Contention: Contention is great enough that the same processor rarely accesses the
same hard atom twice in a row before another proceqor access- the atom.

It follows that hard atoms can be locked simply by using a lock bit on the memory block
of the atom. This is similar to the memory-bit backup for the cache lock-state in a
broadcast protocol (Section B.2.2), except that the lock bits here are not cached, and a
hard atom is purged, as well as unlocked, at the last write to it. The memory unit,
cache, or processor will need to execute an atomic read-and-set on the lock bit as the
data is fetched. It would be fastest to have memory execute the read-and-set, and the
requisite circuit for this is very simpIe. Barring this slight complication to memory,
though, the cache should execute the read-and-set (for the sake of speed), again using a
very simple, fast circuit just for that operation.

This simple scheme, then, fulfills both synchronization requirements for hard atoms -
serialization of requests, and provision of the latest version of the data.

Other Wn'table Objects

soft atoms and unshared writable data present us with two cases for providing the latest
version of writable data, as cited in Section B.1.2.
0 TWO diflerent processes on two different processors access the same writable, shared

data (soft atom)
0 One process on two different processors accesses the same writable (shared or

unshared) data
Let us consider each in turn.

Two Different Processes. Providing the latest version of a soft atom, as for a hard
atom, can be insured by purging all blocks of the atom from the cache after each use of
it, flushing the dirty blocks to memory. The next access to any block of the atom by
that CPU (or, through generalization, by any other CPU) will then generate a cache miss
- due to the purge - causing the block to be fetched from memory, where its latest
version will reside - due to the flush.

To be more specific, recall that conflicting access requests for a soft atom sre serialized
by the software using a synchronization descriptor. So let us assume that a soft atom
occupies a range of sequential addresses, and that this range is recorded in the atom's
synchronization descriptor. When a process is about to release access (read or write
privilege) to the soft atom, it runs through the block addresses in the address range,
informing the cache to purge each block. At any such hit, the cache purges the block,
which implies flushing the block to memory if dirty (Figure 29). Each such block is
devoted to the atom so that this flushing will not overwrite another atom on the same
block (Figure 30).

One Process. In addition, when a process goes to sleep, it must be awakened on the
same CPU by being put in a ready queue for that CPU. Or else, following the above
idea, when the process goes to sleep, it must purge a11 writable data, not only shared
data that is currently being accessed, but unshared data as well. There are two ways to
implement this: distinguish writable and read-only data and keep a record in the cache
directory, or else purge the entire cache when going to sleep.

Version numbers. An alternative to purging soft atoms in the above two situations
would be to maintain, in the synchronization descriptor of a soft atom, the number of
times the atom has been writt.en, incrementing the number each time write privilege is
released. This number, the uersion number, would be recorded in the cache directory
for a block of the atom when the block is fetched into the cache. On an address hit, the
descriptor version number would be compared with the version number recorded for the
block in the cache, and if the two are equal, the block need not be fetched from memory.
In addition, when the process is about to release write privilege to the soft atom, it incre
ments the version number in the descriptor. It then runs through the block addresses in
the atom a d d r e range, and at any such hit, instead of telling the cache to purge the
block, as in the previous scheme, tells the cache to record the new version number in the

>

- 97 -

directory entry for the block; and if the block is dirty, the cache will flush it. The cost
of this method, however, may well outweigh the performance gain of fewer fetches. Both
the cost and the performance gain must be evaluated in greater detail for a specific sys-
tem in order to determine which outweighs the other.

Presence List. A presence list (Section B.1.3) could be used for writable data. But if
there is no broadcast capability, when a block must be purged, the caches in which it
resides must be contacted sequentially. On the surface, this appears too slow for data
that may reside in more than one cache.

Archibald and Baer (1984), nevertheless, do not believe that sequential notification is too
slow, since they feel that the occasions for using it will be sufficiently infrequent. In fact,
surprisingly they eliminate the presence list, maintaining a simple four-state indicator in
memory: (1) absent from caches, (2) may have read privilege in some cache, (3) has read
privilege in exactly one cache, (4) has write privilege and dirty status in exactly one
cache. Consequently, when sequential notification is required, all caches must be notified
since there is no presence list. (Note that although Archibald and Baer use the term
‘broadcast’ in their paper, they actually mean that the recipients of the message are
notified sequentially, not concurrently.)

2. Emcient Busy Wait

Although this topic is not relevant to the Aquarius architecture, since efficient busy wait
will be implemented in a broadcast system (the synchronization system) I would,
nevertheless, like to explore it here, for completeness. Three methods of busy wait for
non-broadcast systems will be presented.

Immediate retry
Fixed-delay retry
FIFO retry

The two simpler methods do less to reduce memory accesses, so are sufficient for lower
contention locks, while the most structured method may be useful for high contention
locks. If the hardware does not implement sleep/priqrity queues, the high contention
locks will undoubtedly be the locks on the sleepwait queues and servicerequest queues.
How much contention must a lock receive in order to warrant the highly-structured wait
scheme? This can only be determined by detailed performance analysis, which is not
provided here.

In a non-broadcast system, the hard atom containing the status information on a lock
must be polled in shared-memory using the switch. It is desired, then, to minimize the
number of unsuccessful polls or retries. If, in addition, the processor is idling while wait-
ing, it is desired to minimize the idle time, by polling as soon after the lock is released as
possible. However, the time of release can only be estimated, so to poll as after
release as possible it would generally be necessary to poll several times unsuccessfully. A

- 00 -

fradeofl, consequently, emerges:
Wiirnize the cumber 01 polls

Xiinimize the time from release to poll.
VS .

Let us, then, look at the three polling disciplines.

Immediate Retry. Under immediate retry, the process retries immediately after a
failure - the process spins in a loop dedicated to testing the lock. This is the simplest
but worst policy. For though it will catch the lock at the earliest possible moment, it
generates the most unsuccessful polls, flooding the switch with useless accesses, and disal-
lowing the CPU from doing any other work.

Fixed-Delay Retry. In fixed-delay retry, the process retries after a fixed delay, the
same delay for all processes. The delay is usually half of the time that a process is
expected to hold the lock (Denning, Dennis, B r u d e l d 1981). This is better, but does
not take into account contention for the lock - the number of processes that are waiting
on the lock at the time the lock is tested.

FIFO Retry. Under FIFO retry, at the time of a poll, the process schedules its subs*
quent poll based on the number of waiting processes ahead of it. This number is deter-
mined using a sequencer, and the appropriate delay is then determined using this number
and a time value. This method of busy wait is quite complicated, and may not be feasi-
ble. Severtheless, for the sake of exploration, let us plunge onward.

FIFO Queuing. A sequencer is data structure that contains two hard atoms - a ticket
field and a nezf field - and is used to manage acces by processes to a resource pool
using busy wait. The waiting processes constitute a busy-wait queue, in contrast to the
semaphore sleepwait queue, because the processes are busy waiting rather than sleep
waiting in the queue. If the maximum size of the pool is n , then the current size varies
between 0 and n as the items are allocated and deallocated. The ticket is initialized to
zero, the next field is initialized to n, and each is operated on by increment. The result
ing difference between the two values indicates the following, where size refers to current
size of the pool or queue.

Sext-ticket 2 0 indicates
>

3 Pool si:e - number of resource items available
D Queue mpfy - no processes waiting

Sest-ticket 0 indicates

1: Pool empty - no resource items available
z Queue size - number of processes waiting

IVhen a process first accesses the sequencer, ticket is atomically read and incremented
(the process takes a ticket), and then next is read (the process finds out who is next). If

- 99 -

the two values are not covered by the same lock, next is read after taking a ticket, since
next may be incremented in the meantime, and the process should get the latest value
possible. The process then subtracts its ticket value from next, yielding the number of
resource items available. If the number is greater than zero, the process has gained
access to the pool; otherwise it must wait, and poll later. At the time of retry, the pro-
cess reads just next, and, as before, subtracts its ticket value from next, yielding the
number of resource items available. When a process releases access, next is incremented
atomically.

The situation of interest here is to organize busy waiting on a lock which grants sole
access to shared data, such as a sleep-wait queue. Consequently, n is just one, and we
will speak of the process having access as holding a lock.”

Retry Delay. Waiting processes schedule their retries to a lock as follows. The length of
time that a process is expected to hold the lock is kept in an additional time field with
the sequencer. Noting that the difference already calculated, ncyt-ticket, indicates the
number of processes waiting ahead of the current process, the time and dserence (with
the correct sign) are multiplied, adding on, say, half of the time, to cover for the current
lock holder. The process will then retry at that time. If exact multiplication is too slow,
then some reasonable approximation is made.

-4 stochastic model is needed to determine what the time value and delay function should
be, due to the variability involved. The variability in the time that a process holds a
lock is due to conditional branches, switch accesses, and traps. The variability in wait-
ing for switch access can be reduced if a processor temporarily boosts its switch arbitra-
tion priority while holding a lock. The atomic operation could also be executed by the
CPU holding onto the switch throughout the operation, but for a lengthy operation this
would be wasteful of the switch. Process-switching interrupts are disabled when holding
a lock (as discussed in Section B.2.2); while other traps may remain enabled, according to
the judgment of the process. But variability also occurs in the time between the release
of a lock and the moment that the next process locks the lock, as well as in the time
between one poll of a waiting process and the subsequent poll of the same process.
(Remember that a process must get access to the switch in order to poll.) Just the same,
each poll does obtain the current value of next, so the new difference, next-ticket, can
be calculated, and the su6sequent poll will not be thrown’ off by the van’ability up to this
point. This is a critical property of the sequencer.

Disabling Process-Sun’tching. Under FIFO busy wait, a process disables process-
switching interrupts while waiting, even i f it must idle. The reasons for this are two.

Reed and Kanodia (1979) discuss the use of sequencers to implement sleep wait rather than
busy wait. However, using sequencers to implement sleep wait appears to me to add needless
complexity as compared to using semaphores, whereas sequencers add valuable eompleSty for
implementing busy wait. The discussion of Reed and Kanodir seems to me Lo be mainly Of
theoretical interest.

loo -

First, the variability in the wait time would otherwise be too great to make the delay
cslculatign usefuL Second, when a process's turn arrives, that process has, in effect,
locked the data - no other process can access the data - so it should be ready to run
at that time. Under busy wait, this implies that the process does not allow itself to be
put on a ready queue while waiting. What, then, are the effects of disabling process-
switching?

Suppose all processes busy-waiting on a particular lock must idle while waiting. Their
disabling of process-switching interrupts forces their processors to idle during that time.
IVould it be better to forget the FIFO retry scheme and revert to ked-delay, which does
not require the disabling of process-switching interrupts? This depends on how much less
idling (a positive effect) and how many more retries (a worse negative effect) are
expected per processor under fixed delay. The overall effect on the system, in turn,
depends on the percentage of processor8 that are expected to be busy-waiting on the lock
at any one time. These effects can be determined using a stochastic model and simula-
tion.

Further, suppose an urgent i n t e m p t is ignored while busy-waiting. What are the effects
of this? It turns out that this is only a problem for 1/0 processors which handle real-
time interrupts, not CPUs. These considerations and others are discussed in Appendix 5.

Finally consider that if process-switching interrupts were, for some reason, enabled dur-
ing FIFO busy wait, and if the process were indeed switched out, its priority should tem-
porarily be raised. For, as in holding a lock, this is necessary not only for efficiency, but
a h in order to avoid deadlock; otherwise a lower priority process could be ahead of a
higher priority process in the busy-wait queue and never again get processor time after it
is put on a prioritized ready queue.

Time Measure. Polling requires some measure of time so that a process can estimate
when to retry (except under immediate retry). Let us consider a.few possible measures.
One measure is the number of processor instructions executed during the time period of
interest, but this measure is very crude, since different instructions take different
amounts of time. The finest measure is the number of clock cycles occurring during the
interval of time. While an intermediate measure is some, fraction of the actual number
of clock cycles. The advantage of using a fraction is that it will allow smaller time fields
and hence less memory space and less comparison hardware. Finally, remember that no
matter what time measure is used, a stochastic model for the various components of the
wait interval is needed, in order to account for the variability that will occur.

- 101 -

Appendix 5

Interrupt Management

At various times throughout the discussion we have met occasions for generating and for
disabling specific types of interrupts. Now let us gather together the issues surrounding
interrupts, and look at them in the detailed context thus far de-reloped. We are con-
cerned, here, with interrupts, not exceptions, since ezcepiions are internal to a program,
and thus the effects of disabling them are relatively clear to the program, and their disa-
bling will simply affect the processing of the program that does the disabling. Whereas
some interrupts are generated from outside the program, so the effects of disabling them
reach into the rest of the system and are not so clear cut. Interrupts should be con-
sidered more closely, then, to elucidate the effects of their being disabled.

Intempt Types

A computer system may be thought of as executing two kinds of activity: computation
and I/O. In an efficient multiprocessor system, special processors (I/O processors) are
devoted to 1/0 so that they can meet the 1/0 demands without taking processor time
from the computation. The rest of the processors (CPUs) are devoted to computation,
and their processes can, conversely, disable process-switching interrupts without concern
for ignoring real-time 1/0 signals. These CPU processes issue 1/0 requests for the 1/0
processors (IOPs) to service, receive the replies from the IOPs, and manage the buffers
that are used by the IOPs in main memory; but the CPU processes remain detached
from the real-time constraints of the I/O. This approach, in fact, generally holds for so-
called uniprocessor (single CPU) systems, whose IOPs may range from powerful pro-
grammable processors to simpIe finite-state machines.

- 102 -

I

1Vith this distinction in mind, let us consider the interrupts that a CPU and an IOP may
encounter. The following two lists are the beginning of such an enumeration.

CPU interrupts
o f i o n ' t y preempfion: In a broadcast system, a process is moved from a wait

queue (or a CPU) to a ready queue, preempting a lower priority process from its
CPU.

o Quantum timer: In a multiprogrammed system, a process has run for its entire
time slice or quantum and must give up its CPU.

o Busy-wuit termination: In a broadcast system, a busy-waiting process can now
take its turn and access the da ta

E Routine operating system taSk8: Interrupts, such as time-of-day interrupts, will
cause a temporary switch to the operating system, and then back again to the
user process.

o Hardwure errors: Processor, switch, memory, power failure, soft reset.

D Ready/Done: An interrupt from an 1/0 device that has just become ready or has
just finished servicing a request.

G Busy-waif termination: In a broadcast system where access to 1/0 request and
reply queues are implemented by software, rather than by hardware, IOP
processes must busy-wait for access to queues.

o Hardware errors: Processor, switch, memory, power failure, soft reset.

IOP interrupts

CPU Interrupts. In a broadcast system implementing priority preemption, whenever
a process is moved to a ready queue, its priority is broadcast to all processors, as
explained in Section C.2.2. If its priority is higher than that of a running process,
hardware at the latter CPU generates'an interrupt. If the process has this interrupt
enabled, it goes to sleep - placing itself on a ready queue - and loads the process of
higher priority from its ready queue (Figure 25).

In addition, if the process is moved from a semaphore wait-queue to the ready queue, it
now holds privileged access to the data controlled by the semaphore (it holds the 'lock'),
so its priority should be raised temporarily. An easy way b implement this is to devote
the upper bits of the priority word to this purpose. They are normally set to their
minimum value. but in this case are temporarily raised to an appropriate level.

-4 multiprogrammed system will probably implement time quuntu in order to maintain
sufficiently low turnaround or response times for short or interactive programs, respec-
tively. In this case, when a process is loaded into a CPlj to run, a CPC' timer is loaded
\i.ith the process's time quantum. If the timer exhausts its count before the process ter-
minates or blocks for I/O, it generates an interrupt, and if the interrupt is enabled, the
process places itself on a ready queue and loads the highest priority process from the
queue. The latter may actually be the original process, in which case it need not save
and reload its state. If an interrupt is not enabled at the time it is generated, it is

- 103 -

subsequently serviced when it is enabled.

In a broadcast system that implements priority preemption as well as time quanta, the
preemption activity described above is also generated. That is, when the process that
has exhausted its time slice puts itself on a ready queue, its priority is broadcast to all
CPUs. Consequently, a lower priority process running on another CPU may be
preempted, and the two processes will end up simply interchanging CPUs. An improve-
ment in this case is for the lower priority process to signal the higher when the higher is
putting itself on the queue, thereby aborting the enqueuing and allowing the higher to
continue running where it is.

Recall that time quanta are of value for insuring reasonable turnaround and response
times for the users of a multiprogrammed or interactive system, respectively. Conse-
quently, if the system is, at the other extreme, executing a single program with many
processes, the priorities of the processes should be sufficient to manage the timesharing of
the CPUs among the processes. In this cme, quantum timing would generate needless,
wasteful process switching, and should not be used.

As we have also seen, in a broadcast system, a busy-waiting process is notified via broad-
cast and an interrupt that it can now access the data (Section B.2.2).

Finally, routine maintenance interrupts, such as time-of-day interrupts, will cause a tem-
porary switch to the operating system, and then back again to the user process.
Whereas hardware errors may cause the processor to retry an action or to halt. The
latter would not be disabled when a lock is locked.

IOP Interrupts. An 1/0 device that has just become ready or has just finished servic-
ing a request will interrupt its IOP. These interrupts will d s e r in priority, the more
urgent interrupts being given higher priority. For example, disks will have higher prior-
ity than terminals, and unbuffered 1/0 devices will take precedence over buffered dev-
ices.

Regarding busy-wait, if the hardware does not implement sleepwait queuing, an IOP
process will have to busy wait on system process and a/O queues when seeking access.
Unlike a CPU, however, an IOP should be able to manage 1/0 without process-
switching, thereby making 1/0 management more efficient and ruling out the arbitrarily
long wait that is possible in process switching. However, hardware sleep-wait queuing
does away with the need for busy waiting to gain access to the system queues, making
1/0 even more efficient, as discussed in Section C.l.

- 104 -

.& noted many times, process-switching interrupts are disabled at strategic moments
during synchronization activity, typically while a process has access to writeshared data
- atoms. The most general reason is to limit the time that the data is locked and there-
fore unavailable to other processes, in particular, to preclude arbitrarily long waiting.
The same argument also applies to disabling process-switching interrupts while busy
waiting under the FIFO scheme (Appendix 4). Other reasons may apply in specific situa-
tions.

From the preceding enumeration of CPU interrupts, we can at last get some feel for the
system effects of a CPU disabling process-switching interrupts. The productivity of the
system will suffer to the extent that too many CPUs disable switching too long, leaving
an insufficient number to service the preemption requests - to run higher priority
processes - as rapidly as needed. Response time of a multiprogrammed system will
suffer to the extent that too many CPUs disable switching too long, leaving an
insufficient number to service the quuntum firnet requests as rapidly as needed. (The
terminal 1/0 requests are handled by IOPs, not CPUs.) Finally, maintenance tasks will
be neglected if their interrupts are disabled for too long. But the specific effects on per-
formance can only be determined through further analysis, followed by stochastic model-
ing and simulation.

- 105 -

Figures

--
-- - I

z 1

1 1

4 I

I -1

I

ii I \l'*d;Zr"

B
block
C
D
F
I
L
LW
R
S
U
W
word

Abbreviations for
Subsequent Figures

Busy-wait register is loaded
target block
Clean
Duty
Fetch
Invalid
Lock
Lock waiter
Read
Source
Unlock
Write
target word

Note for
Subsequent Figarea

A state indicator inside a cache indicates that the target block is present in that cache
and has that state. A blank cache indicates that the block is absent or invalid in that
cache.

.

n
I I -

noooln I/

e

0

I

J

i

1

I /-

Synchronitat ion
Memory

Processor

Cache

IAl
Y /‘

0 I

